Supplement

to the paper

Medium-term Fluctuations and the "Great Ratios" of Economic Growth

by Christian Groth* and Jakob B. Madsen**
* Department of Economics and EPRU, University of Copenhagen, Denmark
Chr.Groth@econ.ku.dk
** Department of Economics, Monash University, Australia
Jakob.Madsen@econ.ku.dk.

February 14, 2015

1. Introduction

This supplementary material gives an account of some details in the proof of (ii) of Proposition 1, omitted from the last paragraph of Appendix A of the paper. In addition, as a supplement to Appendix B of the paper, the mathematics behind the applied normalisation of the CES production function is explained. Finally, a list of data sources for Section 2 of the paper is provided.

2. The Jacobian Matrix

For convenience, we repeat here the entries of the Jacobian matrix of the three-dimensional dynamic system of the model, evaluated in steady state:

$$
J=\left(\begin{array}{lll}
j_{11} & j_{12} & j_{13} \\
j_{21} & j_{22} & j_{23} \\
j_{31} & j_{32} & j_{33}
\end{array}\right)=
$$

$$
\left[\begin{array}{ccc}
\frac{\hat{c}\left(q^{*}, \tilde{w}^{*}\right)\left[\theta m^{\prime}\left(q^{*}\right) q^{*}+\rho-n-(1-\theta) \gamma\right]}{h\left(q^{*}, \tilde{w}^{*}\right)} & \frac{\varepsilon\left(k^{*}\right)^{2} \hat{c}\left(q^{*}, \tilde{w}^{*}\right)+\theta q^{*} \sigma\left(k^{*}\right)^{2} \varphi^{\prime}(\bar{v}) \bar{v}}{\varepsilon\left(k^{*}\right)^{2} k^{*} h\left(q^{*}, \tilde{w}^{*}\right)} & \frac{-\theta q^{*} \frac{\tilde{w}^{*}}{k^{*}} \sigma\left(k^{*}\right) \varphi^{\prime}(\bar{v})}{\varepsilon\left(k^{*}\right) k^{*} h\left(q^{*}, \tilde{w}^{*}\right)} \\
0 & -\frac{\sigma\left(k^{*}\right)}{\varepsilon\left(k^{*}\right)} \varphi^{\prime}(\bar{v}) \bar{v} & \frac{\tilde{w}^{*}}{k^{*}} \varphi^{\prime}(\bar{v}) \\
m^{\prime}\left(q^{*}\right) x^{*} & 0 & 0
\end{array}\right]
$$

where $h\left(q^{*}, \tilde{w}^{*}\right) \equiv \hat{c}\left(q^{*}, \tilde{w}^{*}\right)+\theta m^{\prime}\left(q^{*}\right) q^{*^{2}}>0$. In particular, we observe that $j_{21}=0, j_{23} \neq 0$ and $j_{31} \neq 0$.

Let $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right)=(q, \tilde{w}, x)$ and $\boldsymbol{x}^{*}=\left(x_{1}{ }^{*}, x_{2}{ }^{*}, x_{3}{ }^{*}\right)=\left(q^{*}, \tilde{w}^{*}, x^{*}\right)$. The eigenvalues of \boldsymbol{J} are denoted μ_{1}, μ_{2} and μ_{3}. We know from Appendix A of the paper that one eigenvalue, say μ_{3}, is real and positive, and that the other two eigenvalues have negative real part, that is, $\mu_{1}=a_{1}+i b$ and $\mu_{2}=a_{2}-i b$, where $a_{1}<0$ and $a_{2}<0$. In case μ_{1} and μ_{2} are real, $b=0$. Otherwise, μ_{1} and μ_{2} are complex, i.e., $b \neq 0$ and $a_{1}=a_{2}=a$.

3. The general convergent solution

There always exist two linearly independent vectors, $\mathbf{v}^{1}=\left(v_{1}^{1}, v_{2}^{1}, v_{3}^{1}\right) \in R^{3}$ and $\mathbf{v}^{2}=\left(v_{1}^{2}, v_{2}^{2}, v_{3}^{2}\right) \in R^{3}$, such that the stable linear subspace, M^{s}, is spanned by these, i.e. M^{s} $=S p\left(v^{1}, v^{2}\right)$ (see, e.g., Braun, 1975).

In case μ_{1} and μ_{2} are real and distinct, any convergent solution is, in the neighbourhood of \boldsymbol{x}^{*}, approximately of the form

$$
\begin{equation*}
\boldsymbol{x}_{t}=c_{1} \boldsymbol{s} e^{\mu_{1} t}+c_{2} \boldsymbol{u} e^{\mu_{2} t}+\boldsymbol{x}^{*}, \tag{3.1}
\end{equation*}
$$

where c_{1} and c_{2} denote constants that depend on initial conditions, whereas $\boldsymbol{s}=\left(s_{1}, s_{2}, s_{3}\right)$ and $\boldsymbol{u}=\left(u_{1}, u_{2}, u_{3}\right)$ are eigenvectors corresponding to μ_{1} and μ_{2}, respectively; so, \boldsymbol{s} and \boldsymbol{u} are linearly independent and $M^{s}=S p(\boldsymbol{s}, \boldsymbol{u})$. Alternatively, we may have $\mu_{1}=\mu_{2}=\mu<0$, and then any convergent solution is of the form

$$
\begin{equation*}
\boldsymbol{x}_{t}=\left[c_{1} \boldsymbol{s}+c_{2}(\boldsymbol{u}+t \boldsymbol{s})\right] e^{\mu t}+\boldsymbol{x} *, \tag{3.2}
\end{equation*}
$$

where \boldsymbol{s} is an eigenvector corresponding to μ, and \boldsymbol{u} is a linearly independent eigenvector also corresponding to μ, if such an eigenvector exists; otherwise, \boldsymbol{u} is a generalized eigenvector satisfying

$$
\begin{equation*}
J u=\mu u+s, u \neq 0 \tag{3.3}
\end{equation*}
$$

Finally, when μ_{1} and μ_{2} are complex, any convergent solution is of the form

$$
\begin{equation*}
\boldsymbol{x}_{t}=\left[c_{1}(\boldsymbol{s} \cos b t-\boldsymbol{u} \sin b t)+c_{2}(\boldsymbol{u} \cos b t+\boldsymbol{s} \sin b t)\right] e^{a t}+\boldsymbol{x} *, \tag{3.4}
\end{equation*}
$$

where \boldsymbol{s} and \boldsymbol{u} are the real part and the imaginary part, respectively, of an eigenvector \boldsymbol{w} corresponding to the eigenvalue $\mu_{1}=a+i b$, that is, $\boldsymbol{w}=\boldsymbol{s}+i \boldsymbol{u}$.

So, in all three cases \boldsymbol{s} and \boldsymbol{u} are linearly independent and $M^{s}=S p(\boldsymbol{s}, \boldsymbol{u})$.

4. Existence and uniqueness with given initial conditions

For $t=0$ we have $\boldsymbol{x}_{0}=c_{1} \boldsymbol{s}+c_{2} \boldsymbol{u}+\boldsymbol{x} *$ in all three cases above. By coordinates,

$$
\begin{aligned}
& x_{10}=c_{1} s_{1}+c_{2} u_{1}+x_{1}^{*}, \\
& x_{20}=c_{1} s_{2}+c_{2} u_{2}+x_{2}^{*}, \\
& x_{30}=c_{1} s_{3}+c_{2} u_{3}+x_{3}^{*} .
\end{aligned}
$$

In our economic model \tilde{w} and x are predetermined, whereas q is a jump variable. Hence, we should consider x_{20} and x_{30} as given and x_{10} as endogenous. Consequently, we rewrite the system as

$$
\begin{align*}
& s_{1} c_{1}+u_{1} c_{2}-x_{10}=-x_{1}^{*}, \\
& s_{2} c_{1}+u_{2} c_{2}=x_{20}-x_{2}^{*}, \tag{4.1}\\
& s_{3} c_{1}+u_{3} c_{2}=x_{30}-x_{3}^{*} .
\end{align*}
$$

This system has a unique solution for $\left(c_{1}, c_{2}, x_{10}\right)$, if and only if the vector $z \equiv(-1,0,0)$ does not belong to $S p(\boldsymbol{s}, \boldsymbol{u})$. This condition is equivalent to the stable linear subspace M^{s} not being parallel to the x_{1} axis (i.e., the q axis in Figure A1 in Appendix A of the paper). We now show that this condition is satisfied.

Lemma 1. Let the elements j_{21}, j_{23} and j_{31} in the 3×3 matrix \boldsymbol{J} satisfy $j_{21}=0, j_{23} \neq 0$ and $j_{31} \neq 0$. Let the two linearly independent vectors $\boldsymbol{s} \in R^{3}$ and $\boldsymbol{u} \in R^{3}$ be as defined in Section 3 above. Then the vector $z \equiv(-1,0,0)$ does not belong to $S p(\boldsymbol{s}, \boldsymbol{u})$.

Proof. We prove this by showing that the opposite leads to a contradiction. Suppose $z \equiv(-1,0,0)$ belongs to $\operatorname{Sp}(\boldsymbol{s}, \boldsymbol{u})$. Then there exist constants α_{1} and α_{2}, so that

$$
\alpha_{1} \boldsymbol{s}+\alpha_{2} \boldsymbol{u}=\boldsymbol{z}=\left(\begin{array}{c}
-1 \tag{4.2}\\
0 \\
0
\end{array}\right) .
$$

Multiplying from the left by \boldsymbol{J} gives

$$
\alpha_{1} J \boldsymbol{s}+\alpha_{2} J \boldsymbol{u}=J z=-\left(\begin{array}{l}
j_{11} \tag{4.3}\\
j_{21} \\
j_{31}
\end{array}\right),
$$

There are three cases to consider.
Case 1: μ_{1} and μ_{2} real, and $\mu_{1} \neq \mu_{2}$, both negative. In this case, \boldsymbol{s} and \boldsymbol{u} are eigenvectors corresponding to μ_{1} and μ_{2}, respectively. Hence, (4.3) gives

$$
\alpha_{1} \mu_{1} \boldsymbol{s}+\alpha_{2} \mu_{2} \boldsymbol{u}=-\left(\begin{array}{l}
j_{11} \tag{4.4}\\
j_{21} \\
j_{31}
\end{array}\right) .
$$

If $\alpha_{1}=0$, then (4.2) implies $\alpha_{2} \neq 0$ and therefore $u_{2}=u_{3}=0$, so that $j_{31}=0$, in view of (4.4). But this contradicts the presupposition that $j_{31} \neq 0$. Suppose $\alpha_{1} \neq 0$. Since $j_{21}=0$, (4.4) implies $\alpha_{1} \mu_{1} s_{2}+\alpha_{2} \mu_{2} u_{2}=0$, which, by (4.2), yields $\left(\mu_{1}-\mu_{2}\right) \alpha_{1} s_{2}=0$, implying $s_{2}=0$. But s is an eigenvector corresponding to μ_{1}, so that, in particular,

$$
\begin{equation*}
j_{22} s_{2}+j_{23} s_{3}=\mu_{1} s_{2}, \tag{4.5}
\end{equation*}
$$

in view of $j_{21}=0$. Hence, from $s_{2}=0$ and $j_{23} \neq 0$ follows $s_{3}=0$, and in view of (4.2) this gives $\alpha_{2} u_{3}=0$, implying, by (4.4), $j_{31}=0$, which again contradicts the presupposition that $j_{31} \neq 0$.

Case 2: μ_{1} and μ_{2} real, and $\mu_{1}=\mu_{2}=\mu<0$. Then, at least \boldsymbol{s} is an eigenvector corresponding to μ. If there exists a linearly independent eigenvector also corresponding to μ, \boldsymbol{u} may be taken to be that vector, and then, from (4.4) with $\mu_{1}=\mu_{2}=\mu$, we get $j_{31}=\alpha_{1} \mu s_{3}+\alpha_{2} \mu u_{3}=\mu\left(\alpha_{1} s_{3}+\alpha_{2} u_{3}\right)=0$, in view of (4.2); but this contradicts the presupposition that $j_{31} \neq 0$. Otherwise, \boldsymbol{u} is a generalized eigenvector satisfying (3.3), which together with (4.3) implies

$$
\alpha_{1} \mu \boldsymbol{s}+\alpha_{2}(\mu \boldsymbol{u}+\boldsymbol{s})=\mu\left(\alpha_{1} \boldsymbol{s}+\alpha_{2} \boldsymbol{u}\right)+\alpha_{2} \boldsymbol{s}=-\left(\begin{array}{c}
j_{11} \tag{4.6}\\
j_{21} \\
j_{31}
\end{array}\right) .
$$

By (4.2), this gives, in particular,

$$
\begin{equation*}
\alpha_{2} s_{2}=j_{21}=0, \tag{4.7}
\end{equation*}
$$

in view of the presupposition that $j_{21}=0$, and

$$
\begin{equation*}
\alpha_{2} s_{3}=j_{31} . \tag{4.8}
\end{equation*}
$$

If $\alpha_{2}=0$, then, by (4.8), $j_{31}=0$, which is a contradiction. On the other hand, if $\alpha_{2} \neq 0$, (4.7) gives $s_{2}=0$. Since s is an eigenvector and $j_{21}=0$, (4.5) still holds, so that we now have $s_{3}=0$, in view of $j_{23} \neq 0$. Then, by (4.8), $j_{31}=0$, which is a contradiction.

Case 3: μ_{1} and μ_{2} complex, i.e., $\mu_{1}=a+i b$ and $\mu_{2}=a-i b$, where $b \neq 0$ and $a<0$. In this case, \boldsymbol{s} and \boldsymbol{u} are the real part and the imaginary part, respectively, of an
eigenvector \boldsymbol{w} corresponding to the eigenvalue μ_{1}, that is, $\boldsymbol{w}=\boldsymbol{s}+\boldsymbol{i} \boldsymbol{u}$. Let $\overline{\boldsymbol{w}}$ denote the complex conjugate of \boldsymbol{w}, i.e., $\overline{\boldsymbol{w}}=\boldsymbol{s}-i \boldsymbol{u}$. Then $\boldsymbol{w}+\overline{\boldsymbol{w}}=2 \boldsymbol{s}$ and $\boldsymbol{w}-\overline{\boldsymbol{w}}=i 2 \boldsymbol{u}$. Since $\overline{\boldsymbol{w}}$ is an eigenvector corresponding to μ_{2}, we get

$$
\begin{gather*}
J \boldsymbol{s}=1 / 2 J(\boldsymbol{w}+\overline{\boldsymbol{w}})=1 / 2(J \boldsymbol{w}+J \overline{\boldsymbol{w}})=1 / 2\left(\mu_{1} \boldsymbol{w}+\mu_{2} \overline{\boldsymbol{w}}\right)=1 / 2(2 a \boldsymbol{s}-2 b \boldsymbol{u})=a \boldsymbol{s}-b \boldsymbol{u}, \tag{4.9}\\
i J \boldsymbol{u}=1 / 2 J(\boldsymbol{w}-\overline{\boldsymbol{w}})=1 / 2(J \boldsymbol{w}-J \overline{\boldsymbol{w}})=1 / 2\left(\mu_{1} \boldsymbol{w}-\mu_{2} \overline{\boldsymbol{w}}\right)=1 / 2 i(2 a \boldsymbol{u}+2 b \boldsymbol{s})=i(a \boldsymbol{u}+b \boldsymbol{s}) . \tag{4.10}
\end{gather*}
$$

Hence, (4.3) yields $\alpha_{1}(a s-b \boldsymbol{u})+\alpha_{2}(a \boldsymbol{u}+b \boldsymbol{s})=J \boldsymbol{z}$, which can be written $a\left(\alpha_{1} \boldsymbol{s}+\alpha_{2} \boldsymbol{u}\right)+$ $b\left(\alpha_{2} \boldsymbol{s}-\alpha_{1} \boldsymbol{u}\right)=J z$. In view of (4.2) and the definition of \boldsymbol{z}, this implies, in particular,

$$
\begin{equation*}
b\left(\alpha_{2} s_{2}-\alpha_{1} u_{2}\right)=j_{21}=0, \tag{4.11}
\end{equation*}
$$

by assumption, and

$$
\begin{equation*}
b\left(\alpha_{2} s_{3}-\alpha_{1} u_{3}\right)=j_{31} . \tag{4.12}
\end{equation*}
$$

In view of $j_{21}=0$ the second element of $\boldsymbol{J} \boldsymbol{s}$ is

$$
\begin{equation*}
j_{22} s_{2}+j_{23} s_{3}=a s_{2}-b u_{2}, \tag{4.13}
\end{equation*}
$$

by (4.9), and the second element of $\boldsymbol{J} \boldsymbol{u}$ is

$$
\begin{equation*}
j_{22} u_{2}+j_{23} u_{3}=b s_{2}+a u_{2} \tag{4.14}
\end{equation*}
$$

by (4.10). If $\alpha_{1}=0$, then (4.2) implies $\alpha_{2} \neq 0$ and thereby $u_{2}=u_{3}=0$, so that, by (4.11), $s_{2}=0$. Then (4.13) gives $s_{3}=0$, in view of $j_{23} \neq 0$. This implies, by (4.12), $j_{31}=0$, which contradicts the presupposition that $j_{31} \neq 0$. Now, suppose $\alpha_{1} \neq 0$. From (4.2) follows $s_{2}=$ $-\alpha_{2} u_{2} / \alpha_{1}$, which substituted into (4.11) gives $\alpha_{2}\left(-\alpha_{2} u_{2} / \alpha_{1}\right)-\alpha_{1} u_{2}=0$ or $-\left(\alpha_{2}^{2}+\alpha_{1}^{2}\right) u_{2}=0$, implying $u_{2}=0$ and thereby $s_{2}=0$. Then, (4.14) gives $u_{3}=0$, implying, by (4.2), $s_{3}=0$. From (4.12) then follows $j_{31}=0$, contradicting the presupposition that $j_{31} \neq 0$. Q.E.D.

5. Normalization of the CES function ${ }^{1}$

The "normalisation" of the CES production function described in Appendix C of the paper is based on the following facts. Expressed in the classical way, as in Arrow et al. (1961), the CES production function reads:

$$
\begin{equation*}
y=f(k)=B\left(\alpha k^{\psi /}+1-\alpha\right)^{1 / \psi}, \quad \psi\left(\equiv 1-\sigma^{-1}\right)<1,0<\alpha<1, B>0 . \tag{5.1}
\end{equation*}
$$

Suppose that to begin with we have not specified the parameters ψ, α, and B. Instead, for alternative values of $\psi \in(-\infty, 1)$ we want to adjust the (not dimensionless) parameters α and

[^0]B so that at some baseline point $\bar{k}>0$, the output elasticity with respect to capital, $\varepsilon(k)$, and output per unit of effective labour, y, are and remain equal to some pre-specified values, $\bar{\varepsilon} \in(0,1)$ and $\bar{y}>0$, respectively.

For any $k>0$,

$$
\begin{equation*}
\varepsilon(k) \equiv \frac{k f^{\prime}(k)}{f(k)}=\frac{\alpha}{(1-\alpha) k^{-\psi}+\alpha}, \tag{5.2}
\end{equation*}
$$

where the second equality comes from (5.1). Requiring $\varepsilon(\bar{k})=\bar{\varepsilon}$, we find α as a function of ψ, \bar{k} and $\bar{\varepsilon}$:

$$
\begin{equation*}
\alpha=\frac{\bar{\varepsilon}}{(1-\bar{\varepsilon}) \bar{k}^{\psi}+\bar{\varepsilon}} \equiv \alpha(\psi, \bar{k}, \bar{\varepsilon}) . \tag{5.3}
\end{equation*}
$$

Substituting this value of α into (5.1), we find the required value of B to be

$$
\begin{equation*}
B=\bar{y}\left(1-\bar{\varepsilon}+\bar{\varepsilon} \bar{k}^{-\psi}\right)^{1 / \psi} \equiv B(\psi, \bar{k}, \bar{\varepsilon}, \bar{y}) . \tag{5.4}
\end{equation*}
$$

We end up with a CES function in "family" form, also called "normalised" form:

$$
\begin{equation*}
y=B(\psi, \bar{k}, \bar{\varepsilon}, \bar{y})\left[\alpha(\psi, \bar{k}, \bar{\varepsilon}) k^{\psi /}+1-\alpha(\psi, \bar{k}, \bar{\varepsilon})\right]^{1 / \psi} . \tag{5.5}
\end{equation*}
$$

So (5.3) and (5.4) are necessary conditions for α and B to be such that $\varepsilon(\bar{k})=\bar{\varepsilon}$ and $f(\bar{k})$ $=\bar{y}$.

On the other hand, when α and B in (5.1) equal $\alpha(\psi, \bar{k}, \bar{\varepsilon})$ and $B(\psi, \bar{k}, \bar{\varepsilon}, \bar{y})$, respectively, then it is easily verified that (5.2) implies $\varepsilon(\bar{k})=\bar{\varepsilon}$ and (5.1) implies $f(\bar{k})=\bar{y}$. We conclude that (5.3) and (5.4) are not only necessary but also sufficient conditions for α and B to be such that $\varepsilon(\bar{k})=\bar{\varepsilon}$ and $f(\bar{k})=\bar{y}$. Thereby the formula (5.5) identifies the family of CES production functions that are distinguished by the elasticity of substitution but at the point $k=\bar{k}$ have output elasticity with respect to capital equal to $\bar{\varepsilon}$ and output per unit of effective labour equal to \bar{y}.

This claim includes even the Cobb-Douglas case $\psi=0$ (i.e., $\sigma=1$). To see this, note that when $\psi=0,(5.1)$ above should be interpreted as $f(k)=B k^{\alpha}$. In this case $\varepsilon(k)$ $=\alpha$ for all $k>0$. Hence, to require $\varepsilon(\bar{k})=\bar{\varepsilon}$ immediately means that α must equal $\bar{\varepsilon}$. This is also what inserting $\psi=0$ into the formula (5.3) gives, since $\alpha(0, \bar{k}, \bar{\varepsilon})=\bar{\varepsilon}$. The additional requirement $f(\bar{k})=\bar{y}$ is seen to imply $B=B(0, \bar{k}, \bar{\varepsilon}, \bar{y})=\bar{y} \bar{k}^{-\bar{\varepsilon}}$ (in (5.4), apply L'Hôpital's rule for " $0 / 0$ "). So we end up with the Cobb-Douglas function $y=\bar{y} \bar{k}^{-\bar{\varepsilon}} k^{\bar{\varepsilon}}$, which indeed satisfies
both requirements since it has $\varepsilon(k)=\bar{\varepsilon}$ for all $k>0$ (hence also for $k=\bar{k}$) and $y=\bar{y}$ for $k=\bar{k}$.

One may interpret the original Arrow et al. (1961) form as having an implicit baseline point at $\bar{k}=1$ in the sense that α in the formula (5.1) equals the output elasticity with respect to capital at $k=1$ while B equals output per unit of effective labour at $k=1$. Indeed, from (5.2) follows that $\varepsilon(1)=\alpha$ and from (5.1) follows that $f(1)=B$. Moreover, a convenient way of rewriting the normalized CES function is as

$$
\frac{y}{\bar{y}}=\left(\bar{\varepsilon}\left(\frac{k}{\bar{k}}\right)^{\psi}+1-\bar{\varepsilon}\right)^{1 / \psi}, \quad \psi<1,0<\bar{\varepsilon}<1, \overline{\mathrm{y}}>0, \bar{k}>0 .
$$

Here the capital input and output are measured in a dimensionless way as index numbers, k / \bar{k} and y / \bar{y}, respectively.

As Appendix C of the paper describes, in the context of our complete model we let the role as baseline constellation $(\bar{k}, \bar{\varepsilon}, \bar{y})$ be taken by the steady-state triple $\left(k^{*}, k^{*} f^{\prime}\left(k^{*}\right) / f\left(k^{*}\right), f\left(k^{*}\right)\right)$ obtained, given the baseline values of the background parameters, the baseline value of the investment flexibility, β, and the requirement that $f\left(k^{*}\right) / k^{*}$ is consistent with an investment-GDP ratio of 0.19.

6. Data sources

Data are compiled for the following 13 OECD countries: Canada, the US, Australia, Belgium, Denmark, Finland, France, Germany, the Netherlands, Norway, Spain, Sweden and the UK.

Investment and capital stock of equipment and non-residential structures. Madsen, J.B, V. Mishra and R. Smyth (2012), "Is the Output-Capital Ratio Constant in the Very Long Run?" The Manchester School, 80 (2): 210-236. Updated using OECD, National Accounts, Volume 2, Paris: OECD.

Economy-wide real GDP. Madsen et al. (2012), op cit. Updated using OECD, National Accounts, Volume 2, Paris: OECD.

Labour's income share in manufacturing. Is computed as total labour cost divided by nominal value-added income. Data are available for all countries from the following sources after 1960: OECD, National Accounts, Vol. II, and OECD's Database for Industrial Analysis. Canada. F. H. Leacy (ed.), 1983, Historical Statistics of Canada, Statistics Canada: Ottawa. USA. T. Liesner, One Hundred Years of Economic Statistics, The Economist: Oxford, corporate non-agricultural private sector, Table US. 6. Japan. K. Ohkawa, M. Shinchara and L. Meissner, 1979, Patterns of Japanese Economic Development: A Quantitative Appraisal, Yale University Press: New Haven. Australia. Glenn Withers, Tony Endres and Len Perry,

1985, "Australian Historical Statistics: Labour Statistics," Australian National University, Source Papers in Economic History, No 7. 1950-1971, Department of Labour, 1974, "Labour's share of the national product: The post-war experience," Discussion paper, Melbourne. Belgium. P. Scholliers and V. Zamagni (eds.), 1995, Labour's Reward, London: Edward Elgar. Cahiers Economiques, De Broxelles, 1959 V. 1 (3) and Cahiers Économiques de Bruxelles, 1959. Denmark. P Milhøj, Lønudviklingen I Danmark 1914-1950, København: Ejnar Munksgaard. Hansen, S. A., 1972. Økonomisk vaekst i Danmark Bind II : 1914-1970, $2^{\text {nd }}$ Ed., Universitetsforlaget, Copenhagen. Finland. (1871) R. Hjerppe, 1989, The Finnish Economy, 1860-1985, Bank of Finland, Government Printing Centre: Helsinki. France. Toutain, Jean-Claude, 1987. Le Produit Interieur Brut De La France De 1789 A 1982, Cahiers de I'I. S. M. E. A, Serie Historie Quantitative de I'Economie Francaise, No. 15. Germany: Walther G Hoffmann, 1965, Das Wachstum der Deutschen Wirtschaft seit der mitte des 19. jahrhunderts, Springer-verlag: Berlin. The Netherlands. 1870-1913. J P Smits, E Horlings and J L van Zanden, 2000, Dutch GNP and its Components, 1800-1913, Groningen, http://www.eco.rug.nl/ggdc/PUB/dutchgnp.pdf. 1913-1950. Centraal Bureau voor de Statistiek, 2001. Tweehonderd jaar statistiek in tijdreeksen, 1800-1999, Voorburg. Norway. (1948) Statistisk Sentralbyraa, 1968, Nasjonalregnskap, Oslo. Spain. L Prados de la Escosura, 2003, El Progresso Economico De Espana 1850-2000, Madrid: Fundacion BBVA. Sweden. O Krantz and C A Nilsson, 1975, Swedish National Product 1861-1970, Gleerup: C. W. K. UK. C H Feinstein, 1976, Statistical Tables of National Income, Expenditure and Output of the U.K 1855-1965, Cambridge: Cambridge University Press.

Tobin's \boldsymbol{q}. The log of consumer-price-deflated stock prices is regressed on a time trend and a constant and Tobin's q is presented by the residuals from these regressions except for the US before 2004 where Tobin's q for the US is from S Wright, 2004, "Measures of Stock Market Value and Returns for the U.S. Nonfinancial Corporate Sector", 1900-2002, Review of Income and Wealth, 50, 561-584. For other data see Madsen, J. B. and E. P. Davis (2006), "Equity Prices, Productivity Growth and the New Economy", The Economic Journal, 116 (513), 791811. The data are updated from Datastream.

Unemployment. Madsen, J. B., V. Mishra, and R. Smyth (2008), "Are Labor Force Participation Rates Non-stationary? Evidence from 130 Years for OECD Countries." Australian Economic Papers, 47 (2), 166-189. Updated using OECD, Main Economic Indicators, Paris: OECD.

References

Arrow, K.J., H.B. Chenery, B.S. Minhas and R.M. Solow, 1961, Capital-labor substitution and economic efficiency, Review of Economic Studies, 43, 225-250.

Braun, Martin, 1975, Differential Equations and Their Applications, Berlin: Springer Verlag.
Klump, R., and M. Saam, 2008, Calibration of normalised CES production functions in dynamic models, Economics Letters, 99, 256-259.

La Grandville, Olivier, 1989, "In Quest of the Slutsky Diamond", American Economic Review, 79 (3), 468-81.

[^0]: ${ }^{1}$ This section essentially builds on La Grandville (1989) and Klump and Saam (2008).

