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1. Introduction 

This supplementary material gives an account of some details in the proof of (ii) of 

Proposition 1, omitted from the last paragraph of Appendix A of the paper. In addition, as a 

supplement to Appendix B of the paper, the mathematics behind the applied normalisation of 

the CES production function is explained. Finally, a list of data sources for Section 2 of the 

paper is provided. 

2. The Jacobian Matrix 

For convenience, we repeat here the entries of the Jacobian matrix of the three-dimensional 

dynamic system of the model, evaluated in steady state: 
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where 2ˆ( *, *) ( *, *) '( *) * 0.h q w c q w m q q    In particular, we observe that 

21 23 310,  0 and 0.j j j     

 Let x 1 2 3( , , ) ( , , )x x x q w x  and x* 1 2 3( *, *, *)x x x = ( *, *, *)q w x . The 

eigenvalues of J are denoted 1 2 3,  and    . We know from Appendix A of the paper that one 

eigenvalue, say 3 , is real and positive, and that the other two eigenvalues have negative real 

part, that is, 1 1a ib    and 2 2a ib   , where 1 0a   and 2 0a  . In case 1  and 2  are real, 

0b  . Otherwise, 1  and 2  are complex, i.e., b 0 and 1 2a a a  . 

3. The general convergent solution 

There always exist two linearly independent vectors, 1 1 1 1

1 2 3( , , )v v vv 3R  and 

2 2 2 2 3

1 2 3( , , )v v v R v , such that the stable linear subspace, sM , is spanned by these, i.e. sM  

1 2( , )Sp v v  (see, e.g., Braun, 1975).  

In case 1 2 and   are real and distinct, any convergent solution is, in the 

neighbourhood of *x , approximately of the form 

 1 2

1 2 *
t t

t c e c e 
  x s u x , (3.1) 

where 1 2 and c c  denote constants that depend on initial conditions, whereas 1 2 3( , , )s s ss  and 

u 1 2 3( , , )u u u  are eigenvectors corresponding to 1 2 and   , respectively; so,  and s u are 

linearly independent and ( , )sM Sp s u . Alternatively, we may have 1 2 = 0    , and 

then any convergent solution is of the form 

  1 2 ) *t

t c c t e   x s (u s x , (3.2) 

where s  is an eigenvector corresponding to  , and u  is a linearly independent eigenvector 

also corresponding to  , if such an eigenvector exists; otherwise, u  is a generalized 

eigenvector satisfying 

 ,  0J   u u s u . (3.3) 

Finally, when 1 2 and    are complex, any convergent solution is of the form 

  1 2( cos sin ) ( cos sin ) *at

t c bt bt c bt bt e    x s u u s x , (3.4) 

where  and s u  are the real part and the imaginary part, respectively, of an eigenvector w 

corresponding to the eigenvalue 1 a ib   , that is, i w s u . 

 So, in all three cases  and s u are linearly independent and ( , )sM Sp s u . 
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4. Existence and uniqueness with given initial conditions  

For 0t   we have 0 1 2c c  x s u x* in all three cases above. By coordinates,  

 

10 1 1 2 1 1

20 1 2 2 2 2

30 1 3 2 3 3

*,

*,

*.

x c s c u x

x c s c u x

x c s c u x

  

  

  

  

In our economic model  and w x are predetermined, whereas q is a jump variable. Hence, we 

should consider 20 30 and x x as given and 10x  as endogenous. Consequently, we rewrite the 

system as 

 

1 1 1 2 10 1

2 1 2 2 20 2

3 1 3 2 30 3

*,

       *,

       *.

s c u c x x

s c u c x x

s c u c x x

   

  

  

 (4.1) 

This system has a unique solution for 1 2 10( , , )c c x , if and only if the vector ( 1,0,0) z does not 

belong to ( , )Sp s u . This condition is equivalent to the stable linear subspace sM not being 

parallel to the 1x axis (i.e., the q axis in Figure A1 in Appendix A of the paper). We now show 

that this condition is satisfied. 

 

Lemma 1. Let the elements 21 23 31,  and j j j  in the 3 3 matrix J satisfy 21 230,  0j j   

and 31 0j  . Let the two linearly independent vectors s 3R  and 3Ru  be as defined in 

Section 3 above. Then the vector ( 1,0,0) z does not belong to ( , )Sp s u .  

 

Proof. We prove this by showing that the opposite leads to a contradiction. Suppose 

( 1,0,0) z  belongs to ( , )Sp s u . Then there exist constants 1 2 and   , so that 

 1 2

1

0

0

 

 
 

   
 
 

s u z = . (4.2) 

 Multiplying from the left by J gives 
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31

j

J J J j
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s u z , (4.3) 

There are three cases to consider.  

 Case 1: 1 2 and    real, and 1 2  , both negative. In this case, s and u are 

eigenvectors corresponding to 1 2 and   , respectively. Hence, (4.3) gives 
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s u . (4.4) 

If 1 0  , then (4.2) implies 2 0  and therefore 2 3 0u u  , so that 31 0j  , in view of (4.4). 

But this contradicts the presupposition that
31 0j  . Suppose 1 0  . Since

21 0j  , (4.4) 

implies 1 1 2 2 2 2 0s u     , which, by (4.2), yields 1 2 1 2( ) 0s    , implying 2 0s  . But s 

is an eigenvector corresponding to
1 , so that, in particular, 

 22 2 23 3 1 2j s j s s  , (4.5) 

in view of 21 0j  . Hence, from 2 0s   and 23 0j   follows 3 0s  , and in view of (4.2) this 

gives 2 3 0u  , implying, by (4.4), 31 0j  , which again contradicts the presupposition 

that 31 0j  .  

 Case 2: 1 2 and    real, and 1 2 0     . Then, at least s is an eigenvector 

corresponding to  . If there exists a linearly independent eigenvector also corresponding 

to , u  may be taken to be that vector, and then, from (4.4) with 1 2    , we get 

31 1 3 2 3 1 3 2 3( ) 0j s u s u           , in view of (4.2); but this contradicts the 

presupposition that 31 0j  . Otherwise, u  is a generalized eigenvector satisfying (3.3), which 

together with (4.3) implies 

 

11

1 2 1 2 2 21

31

( ) ( )

j

j

j

       

 
 

      
 
 
 

s u s s u s . (4.6) 

By (4.2), this gives, in particular,  

 2 2 21 0s j   ,  (4.7) 

in view of the presupposition that 21 0j  , and  

 2 3 31s j  . (4.8) 

If 2 0  , then, by (4.8), 31 0j  , which is a contradiction. On the other hand, if 2 0  , (4.7) 

gives 2 0s  . Since s  is an eigenvector and 21 0j  , (4.5) still holds, so that we now 

have 3 0s  , in view of 23 0j  . Then, by (4.8), 31 0j  , which is a contradiction. 

Case 3: 1 2 and    complex, i.e., 1 a ib    and 2 a ib   , where 0b  and 

0a  . In this case,  and s u  are the real part and the imaginary part, respectively, of an 
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eigenvector w corresponding to the eigenvalue 1 , that is, i w s u . Let w  denote the 

complex conjugate of w, i.e., i w s u . Then 2 w w s and 2i w w u . Since w  is an 

eigenvector corresponding to 2 , we get 

 1 2½ ( ) ½( ) ½( ) ½(2 2J J J J a b a b         s w w w w w w s u) = s u,  (4.9) 

 1 2½ ( ) ½( ) ½( ) ½ (2 2 ) ( ).iJ J J J i a b i a b          u w w w w w w u s u s  (4.10) 

Hence, (4.3) yields 1 2( ) ( )a b a b J    s u u s z , which can be written 1 2( )a   s u  

2 1( )b J  s u z . In view of (4.2) and the definition of z, this implies, in particular, 

 2 2 1 2 21( ) 0b s u j    ,  (4.11) 

by assumption, and 

 2 3 1 3 31( )b s u j   . (4.12) 

In view of 21 0j   the second element of Js is 

 22 2 23 3 2 2j s j s as bu   , (4.13) 

by (4.9), and the second element of Ju is 

 22 2 23 3 2 2j u j u bs au   , (4.14) 

by (4.10). If 1 0  , then (4.2) implies 2 0  and thereby 2 3 0u u  , so that, by (4.11), 

2 0s  . Then (4.13) gives 3 0s  , in view of 23 0j  . This implies, by (4.12), 31 0j  , which 

contradicts the presupposition that 31 0j  . Now, suppose 1 0  . From (4.2) follows 2s   

2 2 1/u  , which substituted into (4.11) gives 2 2 2 1 1 2( / ) 0u u       or 

2 2

2 1 2( ) 0u    , implying 2 0u  and thereby 2 0s  . Then, (4.14) gives 3 0u  , implying, 

by (4.2), 3 0s  . From (4.12) then follows 31 0j  , contradicting the presupposition that 31 0j  . 

Q.E.D. 

 

5. Normalization of the CES function1
 

The “normalisation” of the CES production function described in Appendix C of the paper is 

based on the following facts. Expressed in the classical way, as in Arrow et al. (1961), the 

CES production function reads:  

 1/( ) ( 1 )y f k B k      ,       1  ( 1 ) 1,  0 1,  0.B         (5.1) 

Suppose that to begin with we have not specified the parameters ,  ,  and B  . Instead, for 

alternative values of ( ,1)   we want to adjust the (not dimensionless) parameters  and 

                                                 
1
 This section essentially builds on La Grandville (1989) and Klump and Saam (2008). 
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B so that at some baseline point 0k  , the output elasticity with respect to capital, ( )k , and 

output per unit of effective labour, y, are and remain equal to some pre-specified values, 

(0,1)   and 0,y   respectively.
 
 

For any k > 0, 

 
'( )

( ) ,
( ) (1 )

kf k
k

f k k 




 
 

 
 (5.2) 

where the second equality comes from (5.1). Requiring ( )k  , we find  as a  

function of ,   and k  : 

 ( , , ).
(1 )

k
k


   

 
 

 
 (5.3) 

Substituting this value of  into (5.1), we find the required value of B to be 

 1/(1 ) ( , , , )B y k B k y        . (5.4) 

We end up with a CES function in “family” form, also called “normalised” form: 

 
1/

( , , , ) ( , , ) 1 ( , , )y B k y k k k
            . (5.5) 

So (5.3) and (5.4) are necessary conditions for  and B to be such that ( )k  and ( )f k  

y .  

On the other hand, when and B in (5.1) equal ( , , )k    and ( , , , )B k y  , 

respectively, then it is easily verified that (5.2) implies ( )k  and  (5.1) implies ( )f k y . 

We conclude that (5.3) and (5.4) are not only necessary but also sufficient conditions for 

 and B to be such that ( )k   and ( )f k y . Thereby the formula (5.5) identifies the 

family of CES production functions that are distinguished by the elasticity of substitution but 

at the point k k have output elasticity with respect to capital equal to  and output per unit 

of effective labour equal to y . 

 This claim includes even the Cobb-Douglas case 0   (i.e., 1  ). To see this, 

note that when 0  , (5.1) above should be interpreted as ( ) .f k Bk  In this case ( )k  

 for all 0k  . Hence, to require ( )k  immediately means that must equal . This is 

also what inserting 0  into the formula (5.3) gives, since (0, , )k   . The additional 

requirement ( )f k y  is seen to imply (0, , , )B B k y = yk  (in (5.4), apply L’Hôpital’s rule 

for “0/0”).  So we end up with the Cobb-Douglas function ,y yk k  which indeed satisfies 
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both requirements since it has ( )k   for all 0k  (hence also for k k ) and y y for 

k k .  

 One may interpret the original Arrow et al. (1961) form as having an implicit 

baseline point at 1k  in the sense that in the formula (5.1) equals the output elasticity with 

respect to capital at 1k   while B equals output per unit of effective labour at 1k  . Indeed, 

from (5.2) follows that (1)  and from (5.1) follows that (1) .f B  Moreover, a convenient 

way of rewriting the normalized CES function is as 

 

1/

1
y k

y k



 
  

       

,        1,  0 1, y 0,  0.k       

Here the capital input and output are measured in a dimensionless way as index numbers, 

/k k  and / ,y y respectively. 

 As Appendix C of the paper describes, in the context of our complete model we 

let the role as baseline constellation ( , , )k y  be taken by the steady-state triple  

( *, * '( *) / ( *), ( *))k k f k f k f k  obtained, given the baseline values of the background 

parameters, the baseline value of the investment flexibility,  , and the requirement 

that ( *) / *f k k is consistent with an investment-GDP ratio of 0.19.  

 

6. Data sources 

 

Data are compiled for the following 13 OECD countries: Canada, the US, Australia, Belgium, 

Denmark, Finland, France, Germany, the Netherlands, Norway, Spain, Sweden and the UK.  

 

Investment and capital stock of equipment and non-residential structures. Madsen, J.B, 

V. Mishra and R. Smyth (2012), “Is the Output-Capital Ratio Constant in the Very Long 

Run?” The Manchester School, 80 (2): 210-236. Updated using OECD, National Accounts, 

Volume 2, Paris: OECD.  

 

Economy-wide real GDP. Madsen et al. (2012), op cit. Updated using OECD, National 

Accounts, Volume 2, Paris: OECD.  

 

Labour’s income share in manufacturing. Is computed as total labour cost divided by 

nominal value-added income. Data are available for all countries from the following sources 

after 1960: OECD, National Accounts, Vol. II, and OECD’s Database for Industrial Analysis. 

Canada. F. H. Leacy (ed.), 1983, Historical Statistics of Canada, Statistics Canada: Ottawa. 

USA. T. Liesner, One Hundred Years of Economic Statistics, The Economist: Oxford, 

corporate non-agricultural private sector, Table US. 6. Japan. K. Ohkawa, M. Shinchara and 

L. Meissner, 1979, Patterns of Japanese Economic Development: A Quantitative Appraisal, 

Yale University Press: New Haven. Australia. Glenn Withers, Tony Endres and Len Perry, 
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1985, “Australian Historical Statistics: Labour Statistics,” Australian National University, 

Source Papers in Economic History, No 7. 1950-1971, Department of Labour, 1974, 

“Labour’s share of the national product: The post-war experience,” Discussion paper, 

Melbourne. Belgium. P. Scholliers and V. Zamagni (eds.), 1995, Labour’s Reward, London: 

Edward Elgar. Cahiers Economiques, De Broxelles, 1959 V.1 (3) and Cahiers Économiques 

de Bruxelles, 1959. Denmark. P Milhøj, Lønudviklingen I Danmark 1914-1950, København: 

Ejnar Munksgaard. Hansen, S. A., 1972. Økonomisk vækst i Danmark Bind II : 1914-1970, 

2
nd

 Ed., Universitetsforlaget, Copenhagen. Finland. (1871) R. Hjerppe, 1989, The Finnish 

Economy, 1860-1985, Bank of Finland, Government Printing Centre: Helsinki. France. 

Toutain, Jean-Claude, 1987. Le Produit Interieur Brut De La France De 1789 A 1982, 

Cahiers de I’I. S. M. E. A, Serie Historie Quantitative de I’Economie Francaise, No. 15. 

Germany: Walther G Hoffmann, 1965, Das Wachstum der Deutschen Wirtschaft seit der mitte 

des 19. jahrhunderts, Springer-verlag: Berlin. The Netherlands. 1870-1913. J P Smits, E 

Horlings and J L van Zanden, 2000, Dutch GNP and its Components, 1800-1913, Groningen, 

http://www.eco.rug.nl/ggdc/PUB/dutchgnp.pdf. 1913-1950. Centraal Bureau voor de 

Statistiek, 2001. Tweehonderd jaar statistiek in tijdreeksen, 1800-1999, Voorburg. Norway. 

(1948) Statistisk Sentralbyraa, 1968, Nasjonalregnskap, Oslo. Spain. L Prados de la Escosura, 

2003, El Progresso Economico De Espana 1850-2000, Madrid: Fundacion BBVA. Sweden. 

O Krantz and C A Nilsson, 1975, Swedish National Product 1861-1970, Gleerup: C. W. K. 

UK. C H Feinstein, 1976, Statistical Tables of National Income, Expenditure and Output of 

the U.K 1855-1965, Cambridge: Cambridge University Press.  

 
Tobin’s q. The log of consumer-price-deflated stock prices is regressed on a time trend and a 
constant and Tobin’s q is presented by the residuals from these regressions except for the US 
before 2004 where Tobin’s q for the US is from S Wright, 2004, “Measures of Stock Market 
Value and Returns for the U.S. Nonfinancial Corporate Sector”, 1900-2002, Review of Income 
and Wealth, 50, 561-584. For other data see Madsen, J. B. and E. P. Davis (2006), "Equity 
Prices, Productivity Growth and the New Economy”, The Economic Journal, 116 (513), 791-
811. The data are updated from Datastream. 
 

Unemployment. Madsen, J. B., V. Mishra, and R. Smyth (2008), "Are Labor Force 

Participation Rates Non-stationary? Evidence from 130 Years for OECD Countries." 

Australian Economic Papers, 47 (2), 166-189. Updated using OECD, Main Economic 

Indicators, Paris: OECD.  
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