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1. Introduction 

This supplementary material gives an account of some details in the proof of (ii) of 

Proposition 1, omitted from the last paragraph of Appendix A of the paper. In addition, as a 

supplement to Appendix B of the paper, the mathematics behind the applied normalisation of 

the CES production function is explained. Finally, a list of data sources for Section 2 of the 

paper is provided. 

2. The Jacobian Matrix 

For convenience, we repeat here the entries of the Jacobian matrix of the three-dimensional 

dynamic system of the model, evaluated in steady state: 
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where 2ˆ( *, *) ( *, *) '( *) * 0.h q w c q w m q q    In particular, we observe that 

21 23 310,  0 and 0.j j j     

 Let x 1 2 3( , , ) ( , , )x x x q w x  and x* 1 2 3( *, *, *)x x x = ( *, *, *)q w x . The 

eigenvalues of J are denoted 1 2 3,  and    . We know from Appendix A of the paper that one 

eigenvalue, say 3 , is real and positive, and that the other two eigenvalues have negative real 

part, that is, 1 1a ib    and 2 2a ib   , where 1 0a   and 2 0a  . In case 1  and 2  are real, 

0b  . Otherwise, 1  and 2  are complex, i.e., b 0 and 1 2a a a  . 

3. The general convergent solution 

There always exist two linearly independent vectors, 1 1 1 1

1 2 3( , , )v v vv 3R  and 

2 2 2 2 3

1 2 3( , , )v v v R v , such that the stable linear subspace, sM , is spanned by these, i.e. sM  

1 2( , )Sp v v  (see, e.g., Braun, 1975).  

In case 1 2 and   are real and distinct, any convergent solution is, in the 

neighbourhood of *x , approximately of the form 

 1 2

1 2 *
t t

t c e c e 
  x s u x , (3.1) 

where 1 2 and c c  denote constants that depend on initial conditions, whereas 1 2 3( , , )s s ss  and 

u 1 2 3( , , )u u u  are eigenvectors corresponding to 1 2 and   , respectively; so,  and s u are 

linearly independent and ( , )sM Sp s u . Alternatively, we may have 1 2 = 0    , and 

then any convergent solution is of the form 

  1 2 ) *t

t c c t e   x s (u s x , (3.2) 

where s  is an eigenvector corresponding to  , and u  is a linearly independent eigenvector 

also corresponding to  , if such an eigenvector exists; otherwise, u  is a generalized 

eigenvector satisfying 

 ,  0J   u u s u . (3.3) 

Finally, when 1 2 and    are complex, any convergent solution is of the form 

  1 2( cos sin ) ( cos sin ) *at

t c bt bt c bt bt e    x s u u s x , (3.4) 

where  and s u  are the real part and the imaginary part, respectively, of an eigenvector w 

corresponding to the eigenvalue 1 a ib   , that is, i w s u . 

 So, in all three cases  and s u are linearly independent and ( , )sM Sp s u . 
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4. Existence and uniqueness with given initial conditions  

For 0t   we have 0 1 2c c  x s u x* in all three cases above. By coordinates,  
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In our economic model  and w x are predetermined, whereas q is a jump variable. Hence, we 

should consider 20 30 and x x as given and 10x  as endogenous. Consequently, we rewrite the 

system as 

 

1 1 1 2 10 1

2 1 2 2 20 2

3 1 3 2 30 3

*,

       *,

       *.

s c u c x x

s c u c x x

s c u c x x

   

  

  

 (4.1) 

This system has a unique solution for 1 2 10( , , )c c x , if and only if the vector ( 1,0,0) z does not 

belong to ( , )Sp s u . This condition is equivalent to the stable linear subspace sM not being 

parallel to the 1x axis (i.e., the q axis in Figure A1 in Appendix A of the paper). We now show 

that this condition is satisfied. 

 

Lemma 1. Let the elements 21 23 31,  and j j j  in the 3 3 matrix J satisfy 21 230,  0j j   

and 31 0j  . Let the two linearly independent vectors s 3R  and 3Ru  be as defined in 

Section 3 above. Then the vector ( 1,0,0) z does not belong to ( , )Sp s u .  

 

Proof. We prove this by showing that the opposite leads to a contradiction. Suppose 

( 1,0,0) z  belongs to ( , )Sp s u . Then there exist constants 1 2 and   , so that 

 1 2

1

0

0

 

 
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   
 
 

s u z = . (4.2) 

 Multiplying from the left by J gives 
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s u z , (4.3) 

There are three cases to consider.  

 Case 1: 1 2 and    real, and 1 2  , both negative. In this case, s and u are 

eigenvectors corresponding to 1 2 and   , respectively. Hence, (4.3) gives 
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1 1 2 2 21
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j

j

j

   

 
 

  
 
 
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s u . (4.4) 

If 1 0  , then (4.2) implies 2 0  and therefore 2 3 0u u  , so that 31 0j  , in view of (4.4). 

But this contradicts the presupposition that
31 0j  . Suppose 1 0  . Since

21 0j  , (4.4) 

implies 1 1 2 2 2 2 0s u     , which, by (4.2), yields 1 2 1 2( ) 0s    , implying 2 0s  . But s 

is an eigenvector corresponding to
1 , so that, in particular, 

 22 2 23 3 1 2j s j s s  , (4.5) 

in view of 21 0j  . Hence, from 2 0s   and 23 0j   follows 3 0s  , and in view of (4.2) this 

gives 2 3 0u  , implying, by (4.4), 31 0j  , which again contradicts the presupposition 

that 31 0j  .  

 Case 2: 1 2 and    real, and 1 2 0     . Then, at least s is an eigenvector 

corresponding to  . If there exists a linearly independent eigenvector also corresponding 

to , u  may be taken to be that vector, and then, from (4.4) with 1 2    , we get 

31 1 3 2 3 1 3 2 3( ) 0j s u s u           , in view of (4.2); but this contradicts the 

presupposition that 31 0j  . Otherwise, u  is a generalized eigenvector satisfying (3.3), which 

together with (4.3) implies 
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s u s s u s . (4.6) 

By (4.2), this gives, in particular,  

 2 2 21 0s j   ,  (4.7) 

in view of the presupposition that 21 0j  , and  

 2 3 31s j  . (4.8) 

If 2 0  , then, by (4.8), 31 0j  , which is a contradiction. On the other hand, if 2 0  , (4.7) 

gives 2 0s  . Since s  is an eigenvector and 21 0j  , (4.5) still holds, so that we now 

have 3 0s  , in view of 23 0j  . Then, by (4.8), 31 0j  , which is a contradiction. 

Case 3: 1 2 and    complex, i.e., 1 a ib    and 2 a ib   , where 0b  and 

0a  . In this case,  and s u  are the real part and the imaginary part, respectively, of an 
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eigenvector w corresponding to the eigenvalue 1 , that is, i w s u . Let w  denote the 

complex conjugate of w, i.e., i w s u . Then 2 w w s and 2i w w u . Since w  is an 

eigenvector corresponding to 2 , we get 

 1 2½ ( ) ½( ) ½( ) ½(2 2J J J J a b a b         s w w w w w w s u) = s u,  (4.9) 

 1 2½ ( ) ½( ) ½( ) ½ (2 2 ) ( ).iJ J J J i a b i a b          u w w w w w w u s u s  (4.10) 

Hence, (4.3) yields 1 2( ) ( )a b a b J    s u u s z , which can be written 1 2( )a   s u  

2 1( )b J  s u z . In view of (4.2) and the definition of z, this implies, in particular, 

 2 2 1 2 21( ) 0b s u j    ,  (4.11) 

by assumption, and 

 2 3 1 3 31( )b s u j   . (4.12) 

In view of 21 0j   the second element of Js is 

 22 2 23 3 2 2j s j s as bu   , (4.13) 

by (4.9), and the second element of Ju is 

 22 2 23 3 2 2j u j u bs au   , (4.14) 

by (4.10). If 1 0  , then (4.2) implies 2 0  and thereby 2 3 0u u  , so that, by (4.11), 

2 0s  . Then (4.13) gives 3 0s  , in view of 23 0j  . This implies, by (4.12), 31 0j  , which 

contradicts the presupposition that 31 0j  . Now, suppose 1 0  . From (4.2) follows 2s   

2 2 1/u  , which substituted into (4.11) gives 2 2 2 1 1 2( / ) 0u u       or 

2 2

2 1 2( ) 0u    , implying 2 0u  and thereby 2 0s  . Then, (4.14) gives 3 0u  , implying, 

by (4.2), 3 0s  . From (4.12) then follows 31 0j  , contradicting the presupposition that 31 0j  . 

Q.E.D. 

 

5. Normalization of the CES function1
 

The “normalisation” of the CES production function described in Appendix C of the paper is 

based on the following facts. Expressed in the classical way, as in Arrow et al. (1961), the 

CES production function reads:  

 1/( ) ( 1 )y f k B k      ,       1  ( 1 ) 1,  0 1,  0.B         (5.1) 

Suppose that to begin with we have not specified the parameters ,  ,  and B  . Instead, for 

alternative values of ( ,1)   we want to adjust the (not dimensionless) parameters  and 

                                                 
1
 This section essentially builds on La Grandville (1989) and Klump and Saam (2008). 
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B so that at some baseline point 0k  , the output elasticity with respect to capital, ( )k , and 

output per unit of effective labour, y, are and remain equal to some pre-specified values, 

(0,1)   and 0,y   respectively.
 
 

For any k > 0, 

 
'( )

( ) ,
( ) (1 )

kf k
k

f k k 




 
 

 
 (5.2) 

where the second equality comes from (5.1). Requiring ( )k  , we find  as a  

function of ,   and k  : 

 ( , , ).
(1 )

k
k


   

 
 

 
 (5.3) 

Substituting this value of  into (5.1), we find the required value of B to be 

 1/(1 ) ( , , , )B y k B k y        . (5.4) 

We end up with a CES function in “family” form, also called “normalised” form: 

 
1/

( , , , ) ( , , ) 1 ( , , )y B k y k k k
            . (5.5) 

So (5.3) and (5.4) are necessary conditions for  and B to be such that ( )k  and ( )f k  

y .  

On the other hand, when and B in (5.1) equal ( , , )k    and ( , , , )B k y  , 

respectively, then it is easily verified that (5.2) implies ( )k  and  (5.1) implies ( )f k y . 

We conclude that (5.3) and (5.4) are not only necessary but also sufficient conditions for 

 and B to be such that ( )k   and ( )f k y . Thereby the formula (5.5) identifies the 

family of CES production functions that are distinguished by the elasticity of substitution but 

at the point k k have output elasticity with respect to capital equal to  and output per unit 

of effective labour equal to y . 

 This claim includes even the Cobb-Douglas case 0   (i.e., 1  ). To see this, 

note that when 0  , (5.1) above should be interpreted as ( ) .f k Bk  In this case ( )k  

 for all 0k  . Hence, to require ( )k  immediately means that must equal . This is 

also what inserting 0  into the formula (5.3) gives, since (0, , )k   . The additional 

requirement ( )f k y  is seen to imply (0, , , )B B k y = yk  (in (5.4), apply L’Hôpital’s rule 

for “0/0”).  So we end up with the Cobb-Douglas function ,y yk k  which indeed satisfies 
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both requirements since it has ( )k   for all 0k  (hence also for k k ) and y y for 

k k .  

 One may interpret the original Arrow et al. (1961) form as having an implicit 

baseline point at 1k  in the sense that in the formula (5.1) equals the output elasticity with 

respect to capital at 1k   while B equals output per unit of effective labour at 1k  . Indeed, 

from (5.2) follows that (1)  and from (5.1) follows that (1) .f B  Moreover, a convenient 

way of rewriting the normalized CES function is as 

 

1/

1
y k

y k



 
  

       

,        1,  0 1, y 0,  0.k       

Here the capital input and output are measured in a dimensionless way as index numbers, 

/k k  and / ,y y respectively. 

 As Appendix C of the paper describes, in the context of our complete model we 

let the role as baseline constellation ( , , )k y  be taken by the steady-state triple  

( *, * '( *) / ( *), ( *))k k f k f k f k  obtained, given the baseline values of the background 

parameters, the baseline value of the investment flexibility,  , and the requirement 

that ( *) / *f k k is consistent with an investment-GDP ratio of 0.19.  

 

6. Data sources 

 

Data are compiled for the following 13 OECD countries: Canada, the US, Australia, Belgium, 

Denmark, Finland, France, Germany, the Netherlands, Norway, Spain, Sweden and the UK.  

 

Investment and capital stock of equipment and non-residential structures. Madsen, J.B, 

V. Mishra and R. Smyth (2012), “Is the Output-Capital Ratio Constant in the Very Long 

Run?” The Manchester School, 80 (2): 210-236. Updated using OECD, National Accounts, 

Volume 2, Paris: OECD.  

 

Economy-wide real GDP. Madsen et al. (2012), op cit. Updated using OECD, National 

Accounts, Volume 2, Paris: OECD.  

 

Labour’s income share in manufacturing. Is computed as total labour cost divided by 

nominal value-added income. Data are available for all countries from the following sources 

after 1960: OECD, National Accounts, Vol. II, and OECD’s Database for Industrial Analysis. 

Canada. F. H. Leacy (ed.), 1983, Historical Statistics of Canada, Statistics Canada: Ottawa. 

USA. T. Liesner, One Hundred Years of Economic Statistics, The Economist: Oxford, 

corporate non-agricultural private sector, Table US. 6. Japan. K. Ohkawa, M. Shinchara and 

L. Meissner, 1979, Patterns of Japanese Economic Development: A Quantitative Appraisal, 

Yale University Press: New Haven. Australia. Glenn Withers, Tony Endres and Len Perry, 
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1985, “Australian Historical Statistics: Labour Statistics,” Australian National University, 

Source Papers in Economic History, No 7. 1950-1971, Department of Labour, 1974, 

“Labour’s share of the national product: The post-war experience,” Discussion paper, 

Melbourne. Belgium. P. Scholliers and V. Zamagni (eds.), 1995, Labour’s Reward, London: 

Edward Elgar. Cahiers Economiques, De Broxelles, 1959 V.1 (3) and Cahiers Économiques 

de Bruxelles, 1959. Denmark. P Milhøj, Lønudviklingen I Danmark 1914-1950, København: 

Ejnar Munksgaard. Hansen, S. A., 1972. Økonomisk vækst i Danmark Bind II : 1914-1970, 

2
nd

 Ed., Universitetsforlaget, Copenhagen. Finland. (1871) R. Hjerppe, 1989, The Finnish 

Economy, 1860-1985, Bank of Finland, Government Printing Centre: Helsinki. France. 

Toutain, Jean-Claude, 1987. Le Produit Interieur Brut De La France De 1789 A 1982, 

Cahiers de I’I. S. M. E. A, Serie Historie Quantitative de I’Economie Francaise, No. 15. 

Germany: Walther G Hoffmann, 1965, Das Wachstum der Deutschen Wirtschaft seit der mitte 

des 19. jahrhunderts, Springer-verlag: Berlin. The Netherlands. 1870-1913. J P Smits, E 

Horlings and J L van Zanden, 2000, Dutch GNP and its Components, 1800-1913, Groningen, 

http://www.eco.rug.nl/ggdc/PUB/dutchgnp.pdf. 1913-1950. Centraal Bureau voor de 

Statistiek, 2001. Tweehonderd jaar statistiek in tijdreeksen, 1800-1999, Voorburg. Norway. 

(1948) Statistisk Sentralbyraa, 1968, Nasjonalregnskap, Oslo. Spain. L Prados de la Escosura, 

2003, El Progresso Economico De Espana 1850-2000, Madrid: Fundacion BBVA. Sweden. 

O Krantz and C A Nilsson, 1975, Swedish National Product 1861-1970, Gleerup: C. W. K. 

UK. C H Feinstein, 1976, Statistical Tables of National Income, Expenditure and Output of 

the U.K 1855-1965, Cambridge: Cambridge University Press.  

 
Tobin’s q. The log of consumer-price-deflated stock prices is regressed on a time trend and a 
constant and Tobin’s q is presented by the residuals from these regressions except for the US 
before 2004 where Tobin’s q for the US is from S Wright, 2004, “Measures of Stock Market 
Value and Returns for the U.S. Nonfinancial Corporate Sector”, 1900-2002, Review of Income 
and Wealth, 50, 561-584. For other data see Madsen, J. B. and E. P. Davis (2006), "Equity 
Prices, Productivity Growth and the New Economy”, The Economic Journal, 116 (513), 791-
811. The data are updated from Datastream. 
 

Unemployment. Madsen, J. B., V. Mishra, and R. Smyth (2008), "Are Labor Force 

Participation Rates Non-stationary? Evidence from 130 Years for OECD Countries." 

Australian Economic Papers, 47 (2), 166-189. Updated using OECD, Main Economic 

Indicators, Paris: OECD.  
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