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Abstract

The idea that for small disturbances the full employment equilibrium is stable while for
large disturbances it is unstable was coined by Leijonhufvud in the notion of a “corridor”.
We discuss the existence of a corridor in the standard Keynesian-Monetarist textbook
macro-model. It turns out that though the full employment steady state of this model
may be locally stable - which is the case when the well-known Cagan condition holds - the
model is never globally stable. This is due to the inherent non-linearity in the demand for
money function, arising from non-negativity of the nominal rate of interest. Thus, perhaps
surprisingly, the Cagan condition is both necessary and sufficient for the existence of a

corridor in the Keynesian-Monetarist model.
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trap. Hopf bifurcation.
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1 Introduction

This note is concerned with an unfamiliar implication of a familiar macrodynamic
model. It is shown that the full employment equilibrium of the simple Keynesian-

Monetarist medium run model has to be unstable in the large, whether it is locally
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stable or not. By Keynesian-Monetarist medium run model we mean the IS-LM
model dynamized by adding the expectations-augmented natural rate Phillips curve
and adaptive expectations. The qualifier “simple" signifies that the consumption
function is of the simple Keynesian type having current income as the only argument.
It is well-known that, depending on the parameters, the steady state of this model
may be locally stable or unstable (Tobin 1975, Scarth 1977, Taylor 1977, Yarrow
1977). The stabilizing force derives from price level adjustments (notably the Keynes
effect), while the destabilizing force derives from the endogenously changing inflation
expectations. Which is locally the stronger one essentially depends on the celebrated
stability condition found by Cagan in his classical study of hyperinflation (Cagan
1956).

Tobin (1975) hinted at the possibility that the dynamics might give rise to stabil-
ity for small disturbances, but instability for larger chocks. Tobin did not, however,
analyze the problem in a rigorous way and left the definite conclusion for further

investigation.

Using the geometry of the phase plane we show that Tobin’s conjecture is con-
firmed when the inherent non-linearity in the demand for money function, arising
from non-negativity of the nominal rate of interest, is taken into account. Large
contractionary disturbances lead to a dynamic liquidity trap so that the system
never returns to the steady state. Hence, in the simple Keynesian-Monetarist model
deep slumps are selfsustaining. In case the Cagan condition holds, i.e., the steady
state is locally stable, this implies the existence of a “corridor”, a notion introduced
by Leijonhufvud (1973). A corridor is the limited neighbourhood of stability around
a steady state which is locally stable, but not globally stable. Conditions for the
existence of a corridor in different models are discussed in Grossman (1974), Howitt
(1978), Lofgren (1979), Siven (1981), Raymon (1981), Balasko & Royer (1985) and
van de Klundert & Schaik (1990). The question of the existence of a corridor in
the Keynesian-Monetarist model was briefly considered in Cugno & Montrucchio
(1984). They approached the problem by means of the Hopf bifurcation theorem,
analysing the dynamic scheme in a small neighbourhood of the bifurcation value of
the control parameter. This provided no concise conditions as to the existence of a
corridor. We show, however, the global result that the Cagan condition is both a

necessary and a sufficient condition for the existence of a corridor.

Although the model we consider is very simplistic (and degenerates if expecta-

tions are rational instead of adaptive) it is one of the core models of intermediate



macroeconomic textbooks and of discussions of economic policy in the press and
among policy makers (cf. Mankiw 1990, Tobin 1993). The fact that the model is

necessarily unstable in the large therefore seems worthy of some attention.

2 Keynesian-Monetarist Dynamics

The model is the standard imperfectly flexible prices-version of the IS-LM model.
The symbols are: P = price of output, M = nominal money supply (equal to
monetary base), m = real money supply, M /P, y = real output, P /P = actual rate
of inflation, x = expected rate of inflation, ¢ = nominal rate of interest, r = real
rate of interest. A dot denotes a time derivative. F} denotes the partial derivative
with respect to the argument x of a function F' with two or more arguments. The
derivative of a function F' with one argument is denoted F’ or, sometimes, F,. The

model consists of the following six equations, equations (2.3) and (2.4) being merely

identities.
y=Cy)+I(y,r), 0<Cy<Cy+1I,<1, 1 <0, (2.1)
m = L(y,1), L,>0, L; <0, (2.2)
r=1i—uc, (2.3)
m = M/P, (2.4)
P/P=opy)+z, @) =0, ¢ >0, (2.5)
i =b(P/P - z). (2.6)

The behavioural functions C, I, and L (i.e., consumption, investment and money

demand), and the Phillips curve ¢ are continuously differentiable.

M, y* and b are positive constants. y* is the “natural” rate of output defined as
that level of output which is consistent with a constant rate of inflation. We may
also speak of y* as “full employment output” meaning by this no more than the
non-accelerating-inflation level of output. The conception behind (2.1) is that firms
in every short period (in the limit a point in time) adjust output to the effective
demand they meet at the given price level. The assumption is that this takes place
not only below, but also above the natural level of output. It is understood that both
the real wage, the capital stock, and the labour supply allow profitable production

to take place also above the natural level, provided there is sufficient demand.!

!Thus the complexities of “shifting regimes” (see, e.g., Grandmont 1987 and van den Heuvel
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From the point of view of the dynamic analysis there are six endogenous variables:
y, m, x, i, r, and P. Given the initial values x(0) and P(0) the model generates

time paths of these endogenous variables.

The short run

In the short run, i.e., for fixed ¢, there are a historically given money supply, a given
output price and given inflation expectations. Therefore, when considering the LM

equation, (2.2), and the IS equation,

y=Cly)+ I(y,i — z), (2.7)

derived from (2.1) and (2.3), m and z are given for fixed ¢. The “IS curve” is
downward sloping and the “LM curve” upward sloping. The short run solution
(y,1) is therefore unique, and we can write y and i as continuously differentiable

functions of z and m :

y:f(a:,m), i:g<x7m)7 (28)

to be characterized later. The question of existence of this solution (y, ) to (2.2) and
(2.7) calls for a comment since a study of global dynamics should take account of a

large range of variation of x and m. We assume the following boundary conditions:

Al. (i) C(0) >0, and

(ii) there exists 3, 0 < # < 1, such that C, + I, < [ everywhere.

A2. For all y > 0:

(i) lim; ¢ L(y, i) = oo, and
(ii) lim; e L(y, i) = 0.

Part (ii) of A1, i.e., that the marginal propensity to spend is always bounded away
from one, strengthens the standard condition 0 < Cy + I, < 1 in an economically
unimportant, but technically convenient way. As for A2 its rationale is: When the
rate of interest approaches zero, everyone wants to hold his wealth in the form of
cash and may indeed want to borrow and keep the proceeds in cash. This is because

some interest reward is needed to compensate for the lower degree of liquidity which

1983) do not arise.



characterizes bonds and equities. On the other hand, at very high rates of interest
nobody willingly holds money, and society tends to some other means of exchange.

Al is assumed throughout while A2 is assumed until further notice.?

In view of A2 and L; < 0 we can in principle solve (2.2) with respect to ¢, for

given y > 0, m > 0. This gives

i = h(y,m) > 0 with h, = —-L,/L; >0, h,,=1/L; <0, and (2.9)
forally >0 lim Ah(y,m)=0, limo h(y,m) = o0 (2.10)

by A.2. Inserting (2.9) in (2.7) it is straightforward to show:
Property 1. Assume A1 and A2. Then given any x and m, where m > 0, the
system (2.2) and (2.7) has a unique solution (y, 1), as indicated in (2.8), and y and

i are positive.

For use later we observe that

S L sy ey 15 ) ARl st Ll gy sy Sy oy A
(2.11)
Dynamics
From (2.5), (2.6), and (2.8) we obtain
i = bp(f(z,m)). (2.12)
Combining (2.4), (2.5), and (2.8) gives
= =z + o(f(z,m))lm (2.13)

In view of Property 1 the dynamic system (2.12)-(2.13) is defined for all (z,m),
m > 0. The domain of definition of the system will be called U, thatisU = Rx R, ;.

A steady state is a time path along which x and m, and therefore y and i, are
constant. The steady state values of z and m are called x* and m*, respectively.

Now, & = 0 implies, by (2.12) and (2.5), that output equals y*, the natural rate of

2An example of a demand for money function obeying A2 is the case of constant interest
elasticity: L(y, i) = ¥(y)i~%, ¢ > 0, e > 0. A2(i) excludes the Cagan demand for money function
L(y, i) = ¥(y)e™®, a > 0. We deal with that case separately below.
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output. Then, by (2.13), mm = 0 implies z* = 0. Furthermore, m* is the positive
solution in m to the equation y* = C(y*) + I(y*, h(y*,m)) which is derived by
inserting (2.9), y = y*, and = = 0 into (2.7). To ensure existence of such a solution

we need sufficient variability of investment demand. We shall assume
A3. Cly") + I(y*,00) <y < Cly") + I(y*,0).

Le., at a low (high) real rate of interest, investment is (is not) sufficient to absorb

full employment savings. Now follows:

Property 2. Given A1, A2, and A3, the dynamic system (2.12)-(2.13) has a unique
steady state (x*,m*) in the domain of definition, U, and z* = 0. Like x*, m* is
independent of b, the speed of adjustment of inflation expectations, and independent

of ', the steepness of the short run Phillips curve.

Investigating the Jacobian of (2.12)-(2.13), evaluated at the steady state, we find
that the determinant is by'f,, > 0 and the trace is ¢'(bf, — frnm). Thus, the
steady state (0, m*) is locally asymptotically stable — i.e., a sink — if bf,(0,m*) <
fm(0, m*)m*. By (2.11), this inequality is equivalent to

I
b=t <1, (2.14)

m

The steady state is unstable® if this inequality is reversed. It follows that for b (the
speed of adjustment of inflation expectations) or —Lf/m* (the semi elasticity of
money demand with respect to the nominal rate of interest) sufficiently small, the
steady state is a sink, and for b or —Lf/m* sufficiently large, the steady state is

unstable.!

Thus, it cannot be decided a priori whether the steady state is stable or unstable
for small displacements of the economy. This is due to the ambiguous role of price

dynamics in relation to stability. While lower prices increase demand through the

3 A steady state which is not locally stable is called unstable. Our definitions are as in Hirsch &

Smale (1974).
*While ¢/, i.e., the sensitivity of (unanticipated) inflation with respect to the activity level in

the economy, influences neither the position of the steady state nor the question of asymptotic

stability, it turns out that oscillations are less likely to occur, the larger is .



so-called Keynes effect® , the expectation of falling prices decreases demand. Indeed,
if the system is initially in the steady state, the immediate effect of a contractionary
shock is to make y < y*; then inflation goes down (becomes negative) and expected
inflation follows suit, the more quickly so, the higher is b. As appears from (2.7)
output can only return to y*, if the real rate of interest, ¢ — x, is moved downwards.
While falling prices increase real money balances, thereby lowering the nominal rate
of interest, 7, and tending to pull i — x downwards, the expectation of falling prices
evidently works in exactly the opposite direction, tending to increase i — x.° The
first mentioned force is the stronger one when the sensitivity of the nominal rate of
interest with respect to the money supply, —m*/LZ, is high, i.e.., when —L*/m* is

low.

This explains the stability condition (2.14). The condition is called the Cagan
condition because it is formally identical to the stability condition found by Cagan
(1956) in his classical analysis of the purely monetary dynamics in situations of
hyperinflation. As to the Keynesian-Monetarist model the condition (2.14) was, in
essentially the same form, discovered by Tobin (1975). The condition is mentioned
in the second edition of Dornbusch & Fischer (1981, p. 444), but - strangely enough
- not explicitly in later editions, and in Scarth (1988, p. 60).7

3 The Corridor

Leaving the merely local stability analysis we turn to global dynamics. Tobin (1975,
p. 201) gave some hints that the stabilizing force, the Keynes effect, tends to be
relatively weaker the further below equilibrium output the system is. We shall prove
this conjecture, i.e.., that the simple Keynesian-Monetarist model is necessarily
unstable for large contractionary disturbances. Deep slumps are not self-correcting.
This implies that if (2.14) holds, i.e., the steady state is locally stable, then there
exists what Leijonhufvud (1973) calls a “corridor”. By a corridor is meant the

limited neighbourhood of asymptotic stability around a steady state which is locally

’The term Keynes effect is really a misnomer since this effect, measured by f,, as given in

(2.11), is stronger the less Keynesian bias the assumptions have, i.e., the higher is I,./L;.
6This point was already stressed by Keynes (Keynes 1936, p. 263).
"For some extensions, see Groth (1988).

From another perspective the relation between price flexibility and stability is discussed in De
Long and Summers (1986) and King (1988). They deal with stability in the sense of lack of

statistical variance of output rather than as convergence. See also ch. 4 in Sheffrin (1989).



asymptotically stable but not globally asymptotically stable.

To be more precise we introduce the following definitions. Remember that the
domain of definition, R x R, , of our dynamic system (2.12), (2.13) is called U. The
steady state (z*,m*) of the system (2.12), (2.13) is called globally asymptotically
stable if every solution (z(t),m(t)) with (x(0),m(0)) in U converges to (z*,m*)
for t — +oo. A neighbourhood N of (z*,m*) in U is called a neighbourhood of
asymptotic stability if any solution starting in N converges to (z*,m*) for t —
+00. Given a steady state which is locally asymptotically stable but not globally
asymptotically stable, the union of all its neighbourhoods of asymptotic stability is

called a corridor.®

By using the strict notion of asymptotic stability as a criterion we diverge from
Howitt who found this notion inappropriate. He argued that “for the concept of
asymptotic stability corridor-effects seem unlikely to occur” (Howitt 1978, p. 268).
We do not agree since in reality non-linearities of some kind are always present and
may cause a system which is locally asymptotically stable to be unstable in the

large.

In the present case it is the non-linearity in the demand for real balances that
is important. This non-linearity follows from the fact that zero is an absolute floor
to the nominal rate of interest (as expressed in A2). Whatever the value of the
interest elasticity, increases in real money supply become less and less effective in
reducing the nominal rate of interest. To see the implication of this we draw the
phase portrait of the system (2.12), (2.13), cf. Figure 4.1. The slopes of the £ = 0

and m = 0 loci are given by

dm g _fo dm o fe 1
R S P R

At the point of intersection the slope of the m = 0 locus is therefore smaller than

the slope of the £ = 0 locus. Observe that above the © = 0 locus we have y > y*
and below the & = 0 locus y < y*. Moving North-East in the diagram is associated

with rising output.

Now, whatever the specific shape of the demand for money function, as long as
A2 (i) holds, the & = 0 locus in the phase diagram tends to become vertical as x

declines towards some critical value. Indeed, along the & = 0 locus, y = y* and

SA corridor is thus a basin (Hirsch & Smale 1974, p. 190) which does not contain the whole of
U\{(z*, m*)}. The intuitive meaning of the term “corridor” is perhaps clearest if we think of the

economy in (x, m, t)-space rather than in (x, m)-space.
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y>y*

y=y*

y<y*

Figure 1:

therefore, by (2.1), the real rate of interest, r, has a constant value, the steady state
value 7* = h(y*, m*). Thus, along the & = 0 locus we have i = r*+xz = h(y*,m), by
(2.2) and (2.9). Hence, as x tends to —r* along the & = 0 locus, h(y*, m) tends to
zero and m tends to o0, by (2.10), as shown in Figure 1. This is a manifestation of
the non-negativity of the nominal rate of interest, and instability in the large follows
immediately. If the initial position (x(0),m(0)) of the system is on the vertical line
x = —r*, then the solution (z(t), m(t)) moves North-West and never returns to the

steady state.

However, one might be more interested in the movement of the system, when
the initial position is at some point on the vertical line x = 0 below the steady state
point. This corresponds to a situation where the system has been in the steady state
for all £ < 0, but at £ = 0 it is disturbed by a contractionary shock, say a downward
shift of the investment schedule I(y, r) caused by a fall in long run optimism. The
effect of this isthat the new steady state point (0, m*) has a higher m* than the

old, because r* in the new steady state has to be lower than in the old, due to the



shift of I(y,r). Thus, immediately after the shock the economy is at a point, say
20 = (0,mg), below the new steady state point (0,m*), as indicated in Figure 1,
now interpreted as showing the situation after the shock. Hence, at t = 0, y < y*.
Will this recession be self-correcting? The following proposition tells us that if the
initial disturbance is great enough, this will not be the case and deflation will be

permanent.

Proposition 1 (No recovery) Assume Al, A2, and A3. Let a recession as de-
scribed above take place. Then there exists 6, 0 < 6 < 1, such that for mg < ém*
the solution (x(t),m(t)) with (x(0),m(0)) = (0,my) never leaves the deflationary
region’ and y does not tend to y* fort — oo.

The proof rests on tracing a solution curve crossing the vertical line x = —r*,
say at z;, backwards in time. Using that the line segment z;z5, cf. Figure 1, is
compact and that solution curves in the relevant region are less steep the lower is
m for fixed x, it can be shown that the solution curve does indeed cross the vertical
halfline {(z,m) € Ulx =0, 0 < m < m*}. See appendix A.

Corollary 1 If and only if the Cagan condition (2.14) holds, then a corridor exists.

Thus, according to this model the deflationary process set into motion by a deep
slump does not create a return to full employment. The explanation is that the
lower the nominal rate of interest has become during the slump, the more difficult
it is to decrease it further. And as actual and expected inflation continue to fall,
it becomes more and more likely that the real rate of interest will increase instead

0

of decrease.!’ In this manner one might say that it is a dynamic liquidity trap

which causes deep slumps to be self-sustaining'! . Observe that no postulate of a

9The deflationary region is the region A = {(x,m) € U|# < 0, 11 > 0}, cf. Figure 1.

0Tnterestingly, in the boom there is no similar tendency for the stabilizing Keynes effect to be
weaker the further away from equilibrium the system is. On the opposite, —L;/L tends to be
smaller, or at least not larger, the higher is the rate of interest. Indeed, in the case of constant
interest elasticity ¢, —L;/L = —e/i, which is low when ¢ is high.

1 Confining his analysis to the problem of local stability, Johnson (1977) identified the phe-
nomenon of a dynamic liquidity trap with the case of local instability (—bLY/m* > 1). The above
shows, however, that even in case of local stability — and whatever the value of the interest elas-
ticity of the demand for money — the system falls into a dynamic liquidity trap if subjected to a

large contractionary disturbance.
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“conventional”, static liquidity trap - infinite interest elasticity of money demand -
is involved. Likewise, no denial of the existence of and the possible local stability
of a full employment equilibrium is involved. Nevertheless, if a recession is large

enough, a dynamic liquidity trap is set in motion, preventing the recovery.

In essentially the same model Cugno & Montrucchio (1984) analyzed, by means
of the Hopf bifurcation theorem, the related problem of the existence of periodic
orbits surrounding the steady state. In view of the difficulty of establishing whether
the “subcritical” case (the periodic orbit is attracting and occurs to the right of the
bifurcation value of the control parameter, here b) or the “supercritical” case (the
periodic orbit is repelling and occurs to the left of the bifurcation value) is present,
this provided no concise condition as to the existence of a corridor. However, the
Hopf bifurcation theorem is useful to give an idea of the boundary of the corridor
when it exists. The theorem implies that for all b on the one side of the bifurcation
value b = f*m*/ff = —m*/L} and close enough to it, there exists a single periodic
orbit surrounding the steady state with amplitude approximately proportional to
|b — b|*/? (use theorem A.20 in Azariadis 1993 p. 156). When, in addition, (2.14)
holds, we know a corridor exists and we may conjecture that its boundary can be
identified with this periodic orbit. Then, since b = i* /e*, where ¢* is the absolute
value of the interest elasticity of money demand, given the equilibrium rate of interest
i*, the greater is €* the smaller is the “radius” of the corridor. It should be added,
that this is only a local claim pertaining to b sufficiently near b (b < b). I have not
been able to prove- by means of, e.g., the Poincaré-Bendixson theorem - existence

of a periodic orbit for b less than b and thereby that the corridor is bounded above.

4 Extension to the Cagan Demand for Money

Function

The demand for money function preferred by Cagan (1956) and others is
L(y,i) = ¥(y)e ™, a>0, y>0,i<0, (4.1)

where 1)(y) is some positively valued function with ¢ > 0 (representing the trans-
action motive). Since in this case lim; o L(y,7) = ¢¥(y) < oo, (4.1) does not obey

A2(i). Money demand remains finite for ¢ approaching zero.

While rendering the mathematics a little more complicated, allowing for this

case does not change the conclusion. This is because introducing (4.1) does not
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change the basic fact that a negative nominal rate of interest is not compatible with
equilibrium in the assets markets. If the rate of interest was negative, nobody would
want to hold bonds, since money would be a better alternative, earning zero interest
while providing more liquidity. The Cagan function should therefore be interpreted

in the following way

. { [w(y)eai if >0, (2.15)

Mo =19 ty), 00) if i =0,

i.e., the demand function becomes set valued at i = 0. With assumption A2 modified
accordingly the argument for the existence of a corridor if and only if ba < 1 still
goes through, the only difference being that the £ = 0 locus in Figure 1 now has a

kink at x = —r*, where it becomes vertical. See appendix B.

Interestingly, if the demand for money function (4.1) was not restricted to ¢ < 0,
the system would indeed be globally asymptotically stable, if the Cagan condition,
ba < 1, holds. This can be shown by using Olech’s Theorem (Sydsaeter 1981).

5 Conclusion

We have established that in the simple Keynesian-Monetarist model, prevalent in
intermediate macroeconomic textbooks, the Cagan condition only entails local sta-
bility and is in fact, given the non-negativity of the nominal rate of interest, both a
necessary and a sufficient condition for the existence of a corridor. This is an exam-
ple of the limitations of local stability analysis as emphasized by the modern theory
of nonlinear dynamical systems (see, e.g., Azariadis 1993). Of course, the scenario
of complete collapse of the economy and continuing deflation is not plausible. Apart
from its all-round simplistic nature the model abstracts from monetary growth, the
real balance effect and the inflation tax. These matters tend to counteract the dy-
namic liquidity trap so that the economy tends sooner or later to be lifted from the

floor. The model then becomes more like a business cycle model.
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6 Appendix A

Proof of Proposition 1. Letting n = logm, the system (2.12), (2.13) is transformed

into the equivalent system

& = b(p(f(z,€")), (A.1)
n=-r-— @(f(xv en»»

which is defined for all (z,n) in R?. The steady state of (A1) is (0,n*), where
n* = logm*. Imagining that the phase diagram in Figure 1 also portraits the third
and fourth quadrants, we can think of it as the phase diagram of (A1), interpreting

m as mn.

Consider a point on the vertical line x = —r* in Figure 1, say the point z; =
(—r*, ny1), where ny < n*. Let ¢; be fixed. Denote by z(t) the vector function
(x(t),n(t)), and let z(t, z1) be the solution of (A1) passing through z; at t = ¢;, that

is z(t1,21) = 2z1. The slope s of the corresponding trajectory in (z,n) -space is

dn n —x 1
s=s(z,n)=—(r,n)===—rr—— — —, A2
= T E T bl e b 42
which is negative for (z,n) € A = {(z,n) € R?|# < 0,7 > 0}. Thus the solution
curve z(t,z1) at (z,n) = z; points to the North-West in Figure 1. Then, clearly
x(t) < —r* for all ¢ > t; for which the solution z(¢, z1) is defined. Hence, to prove
the proposition it is enough to prove that z(¢, z1), when traced backward in time,

crosses the half line {(x,n) € R*|x = 0,n < n*}.

Let 2122 be the line segment {(z,n) € R* |—r* < z < 0,n = n; }. The continuous
function (x,n) — s restricted to the nonempty compact set z;2; has a minimum,

say S, and 5 < 0. Now, from (A.2)

0s 2 fne”

7 TR <
for (z,n) € Q@ = {(z,n) € A|—r* <z <0,n <ny}. Therefore 0 > s > 5 for all
(z,n) in Q, or |s| < |5] for all (z,n) in Q. The line through z; with slope 5 crosses
the vertical line x = 0 at some point z3. It follows that the solution z(¢,z;) at
some time t, < t; passes through some point, say z = (0,7), on the line segment
zo23. Letting o = n* — n and 0 = e, the proposition is proved. Indeed, as
r(t) = i(t) — z(t) > —x(t) > —z(t;) > r* for all ¢ > ¢, the solution for y(¢) is
bounded away from y*. Q.E.D.
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7 Appendix B

Extension to the Cagan function and similar cases. (3.15a) is a special case of

= L(y,d) ,if i >0,

Lgi)={ 00 B.)
[L(y,0),00), if i =0,

where L(y, ) is single valued, L, > 0, L, < 0, and lim; .o L(y, i) = L(y, 0) < oo.

(B.1) implies that at ¢ = 0 the amount of money which is willingly held (since no

alternative is better) can be anything in the interval [L(y,0), c0).

Equation (2.2) of our model is still valid when m < L(y, 0), and in this case (2.9)
is still implied by (2.2). To this we now add the case m > L(y,0), implying i = 0.

That is, from equilibrium in the assets markets we have

h(y, m) if m < L(y,0),

(B.2)
0if m > L(y,0),

iZH(y,m)Z{

where the function h obeys (2.9). H is continuous since limp, .py0) H(y,m) =
lirnrn—»L(y,O) h(,% m) =0= H(?J» L(y: 0))
Inserting (B.2) in (2.7) gives

Ozy—C(y)—I(y,H(y,m)—x)ED(y,:U,m), (BB)

where D, =1-C, — I, — I,H, > 1 — 3 > 0 by assumption Al. There are two
“regimes”, the positive interest rate regime and the zero interest rate regime. The

solution in y to (B.3) can be written

flz,m)if i >0,

y=Flem :{ T(z,m) ifi=0,

where f(x, m) obeys (2.11), while

a _Ir a Ier
fm = > fm > 07 fm =

Dy Dy =0

by (B.2). The boundary line between the two regimes is called B and is given by
the equation m = L(f(x,m),0). Its slope is

d ~L I,
dm | _ 0,05 o
dx 1-C,— 1,

The phase portrait is given in Figure 2. The argument of Appendix A still goes

through, and the existence of a corridor if and only if ab < 1 follows.
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Figure 2:
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