
Chapter 9

Human capital, learning
technology, and the Mincer
equation

This chapter is meant as a supplement to Acemoglu, §10.1-2 and §11.2. First
an overview of different approaches to human capital formation in macroeco-
nomics is given. Next we go into detail with one of these approaches, the
life-cycle approach. In Section 9.3 a simple model of the choice of school-
ing length is considered. Finally, Section 9.4 presents the theory behind the
empirical relationship named the Mincer equation.1 In this connection it is
emphasized that the Mincer equation should be seen as an equilibrium rela-
tionship for relative wages at a given point in time rather than as a production
function for human capital.

9.1 Conceptual issues

We define human capital as the stock of productive skills embodied in an
individual. Human capital is thus a production factor, while human wealth
is the present value of expected future labor income (after tax).
Increases in the stock of human capital occurs through formal education

and on-the-job-training. By contributing to the maintenance of life and well-
being, also health care is of importance for the stock of human capital and
the incentive to invest in human capital.
Since human capital is embodied in individuals and can only be used one

place at a time, it is a rival and excludable good. Human capital is thus
very different from technical knowledge. We think of technical knowledge as

1After Mincer (1958, 1974).
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a list of instructions about how different inputs can be combined to produce
a certain output. A principle of chemical engineering is an example of a piece
of technical knowledge. In contrast to human capital, technical knowledge
is a non-rival and only partially excludable good. Competence in applying
technical knowledge is one of the skills that to a larger or smaller extent is
part of human capital.

9.1.1 Macroeconomic approaches to human capital

In the macroeconomic literature there are different theoretical approaches to
the modelling of human capital. Broadly speaking we may distinguish these
approaches along two “dimensions”: 1) What characteristics of human capi-
tal are emphasized? 2) What characteristics of the decision maker investing
in human capital are emphasized? Combining these two “dimensions”, we
get Table 1.

Table 1. Macroeconomic approaches to the modelling of human capital.
The character of human capital (hc):

The character of the Is hc treated as essentially different
decision maker from physical capital?

No Yes
Solow-type rule-of-thumb households Mankiw et al. (1992)

Infinitely-lived family “dynasties” Barro&Sala-i-Martin (2004) Lucas (1988)
(the representative agent approach) Dalgaard&Kreiner (2001)
Finitely-lived individuals going through Ben-Porath (1967)
a life cycle (the life cycle approach) Heijdra&Romp (2009)

My personal opinion is that for most issues the approach in the lower-
right corner of Table 1 is preferable, that is, the approach treating human
capital as a distinct capital good in a life cycle perspective. The viewpoint
is:
First, by being embodied in a person and being lost upon death of this

person, human capital is very different from physical capital. In addition,
investment in human capital is irreversible (can not be recovered). Human
capital is also distinct in view of the limited extend to which it can be used
as a collateral, at least in non-slave societies. Financing an investment in
physical capital, a house for example, by credit is comparatively easy because
the house can serve as a collateral. A creditor can not gain title to a person,
however. At most a creditor can gain title to a part of that person’s future
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earnings in excess of a certain level required for a “normal”or “minimum”
standard of living.
Second, educational investment is closely related to life expectancy and

the life cycle of human beings: school - work - retirement. So a life cycle per-
spective seems the natural approach. Fortunately, convenient macroeconomic
frameworks incorporating life cycle aspects exist in the form of overlapping
generations models (for example Diamond’s OLG model or Blanchard’s con-
tinuous time OLG model).

9.1.2 Human capital and the effi ciency of labor

Generally we tend to think of human capital as a combination of different
skills. Macroeconomics, however, often tries (justified or not) to boil down
the notion of human capital to a one-dimensional entity. So let us imagine
that the current stock of human capital in society is measured by the one-
dimensional index H. With L denoting the size of the labor force, we define
h ≡ H/L, that is, h is the average stock of human capital in the labor
force. Further, let the “quality”(or “effi ciency”) of this stock in production
be denoted q (under certain conditions this quality might be proxied by the
average real wage per man-hour). Then it is reasonable to link q and h by
some increasing quality function

q = q(h), where q(0) ≥ 0, q′ > 0. (9.1)

Consider an aggregate production function, F̃ , giving output per time
unit at time t as

Y = F̃ (K, q(h)L; t),
∂F̃

∂t
> 0, (9.2)

where K is input of physical capital. The third argument of F̃ is time, t,
indicating that the production function is time-dependent due to technical
progress.
Generally the analyst would prefer a measure of human capital such that

the quality of human capital is proportional to the stock of human capital,
allowing us to write q(h) = h by normalizing the factor of proportionality
to be 1. The main reason is that an expedient variable representing human
capital in a model requires that the analyst can decompose the real wage
per working hour multiplicatively into two factors, the real wage per unit of
human capital per working hour and the stock of human capital, h. That is,
an expedient human capital concept requires that we can write

w = ŵ · h, (9.3)
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where ŵ is the real wage per unit of human capital per working hour. Indeed,
if have

Y = F̃ (K,hL, t), (9.4)

under perfect competition we can write

w =
∂Y

∂L
= F̃2(K,hL, t)h = ŵ · h.

Under Harrod-neutral technical progress, (9.4) would take the form

Y = F̃ (K,hL, t) = F (K,AhL) ≡ F (K,EL), (9.5)

where E ≡ A · h is the “effective”labor input. The proportionality between
E and h will under perfect competition allow us to write

w =
∂Y

∂L
= F̃2(K,EL, t)E = wE · E = wE · A · h = ŵ · h.

So with the introduction of the technology level, A, an additional decomposi-
tion, ŵ = wE ·A comes in, while the original decomposition in (9.3) remains
valid.
Whether or not the desired proportionality q(h) = h can be obtained

depends on how we model the formation of the “stuff” h. Empirically it
turns out that treating the formation of human capital as similar to that of
physical capital does not lead to the desired proportionality.

Treating the formation of human capital as similar to that of phys-
ical capital

Consider a model where human capital is formed in a way similar to physi-
cal capital. The Mankiw-Romer-Weil (1992) extension of the Solow growth
model with human capital is a case in point. Non-consumed aggregate output
is split into one part generating additional physical capital one-to-one, while
the other part is assumed to generate additional human capital one-to-one.
Then for a closed economy in continuous time we can write:

Y = C + IK + IH ,

K̇ = IK − δKK, δK > 0,

Ḣ = IH − δHH, δH > 0, (9.6)

where IK and IH denote gross investment in physical and human capital, re-
spectively. This approach essentially assumes that human capital is produced
by the same technology as consumption and investment goods.
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Suppose the huge practical measurement problems concerning IH have
been somehow overcome. Then from long time series for IH an index for Ht

can be constructed by the perpetual inventory method in a way similar to the
way an index for Kt is constructed from long time series for IK . Indeed, in
discrete time, with 0 < δH < 1, we get, by backward substitution,

Ht+1 = IH,t + (1− δH)Ht = IH,t + (1− δH) [IH,t−1 + (1− δH)Ht−1]

=

T∑
i=0

(1− δH)iIH,t−i + (1− δH)T+1Ht−T . (9.7)

From the time series for IH , an estimate of δH , and a rough conjecture about
the initial value, Ht−T , we can calculate Ht+1. The result will not be very
sensitive to the conjectured value of Ht−T since for large T the last term in
(9.7) becomes very small.
In principle there need not be anything wrong with this approach. A

snag arises, however, if, without further notice, the approach is combined
with an explicit or implicit postulate that q(h) is proportional to the “stuff”,
h, brought into being in the way described by (9.6). The snag is that the
empirical evidence does not support this when the formation of human capital
is modelled as in (9.6). This is what, for instance, Mankiw, Romer, and Weil
(1992) find in their cross-country regression analysis based on the approach
in equation (9.6). One of their conclusions is that the following production
function for a country’s GDP is an acceptable approximation:

Y = BK1/3H1/3L1/3, (9.8)

where B stands for the total factor productivity of the country and is gener-
ally growing over time.2 Defining A = B3/2 and applying that H = hL, we
can write (9.8) on the form

Y = BK1/3(hL)1/3L1/3 = K1/3(h1/2AL)2/3.

That is, we end up with the form Y = F (K, q(h)AL) where q(h) = h1/2, not
q(h) = h. We should thus not expect the real wage to rise in proportion to
h, when h is considered as some “stuff”formed in a way similar to the way
physical capital is formed.

2The way Mankiw-Romer-Weil measure IH is indirect and questionable. In addition,
the way they let their measure enter the regression equation has been criticized for con-
founding the effects of the human capital stock and human capital investment, cf. Gemmel
(1996) and Sianesi and Van Reenen (2003). It will take us too far to go into detail with
these problems here.
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Before proceeding, a terminological point is in place. Why do we call q(h)
in (9.2) a “quality”function rather than simply a “productivity”function?
The reason is the following. With perfect competition and CRS, in equilib-
rium the real wage per man-hour would bew = ∂Y/∂L= F ′2(K,Aq(h)L))Aq(h)

=
[
f(k̃)− k̃f ′(k̃)

]
Aq(h), where k̃ ≡ K/(Aq(h)L). So, with a converging k̃,

the long-run growth rate of the real wage would in continuous time tend to
be

gw = gA + gq.

In this context we are inclined to identify “labor productivity”with Aq(h)
rather than just q(h) and “growth in labor productivity”with gA + gq rather
than just gq. So a distinct name for q seems appropriate and an often used
name is “quality”.
The conclusion so far is that specifying human capital formation as in

(9.6) does not generally lead to a linear quality function. To obtain the
desired linearity we have to specify the formation of human capital in a way
different from the equation (9.6). This dissociation with the approach (9.6)
applies, of course, also to its equivalent form on a per capita basis,

ḣ = (
Ḣ

H
− n)h =

IH
L
− (δH + n)h. (9.9)

(In the derivation of (9.9) we have first calculated the growth rate of h ≡
H/L, then inserted (9.6), and finally multiplied through by h.)

9.2 The life-cycle perspective on human cap-
ital

In the life-cycle approach to human capital formation we perceive h as the
human capital embodied in a single individual and lost upon death of this
individual. We study how h evolves over the lifetime of the individual as a
result of both educational investment (say time spent in school) and work
experience. In this way the life-cycle approach recognizes that human capi-
tal is different from physical capital. By seeing human capital formation as
the result of individual learning, the life-cycle approach opens up for distin-
guishing between the production technologies for human and physical capital.
Thereby the life-cycle approach offers a better chance for obtaining the linear
relationship, q(h) = h.
Let the human capital of an individual of “age”τ (beyond childhood) be

denoted hτ . Let the total time available per time unit for study, work, and
leisure be normalized to 1. Let sτ denote the fraction of time the individual
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spends in school at age τ . This allows the individual to go to school only part-
time and spend the remainder of non-leisure time working. If `τ denotes the
fraction of time spent at work, we have

0 ≤ sτ + `τ ≤ 1.

The fraction of time used as leisure (or child rearing, say) at age τ is 1−sτ−`τ .
If full retirement occurs at age τ̄ , we have sτ = `τ = 0 for τ ≥ τ̄ .
We measure age in the same time units as calendar time. As a slight

generalization of Acemoglu’s equation (10.2),3 where leisure is not considered,
we assume that the increase in hτ per unit of time (age) generally depends on
four variables: current time in school, current time at work, human capital
already obtained, and current calendar time itself, that is,

ḣτ ≡
dhτ
dτ

= G(sτ , `τ , hτ , t), h0 ≥ 0 given. (9.10)

The function G can be seen as a production function for human capital −
in brief a learning technology. The first argument of G reflects the role of
formal education. Empirically, the primary input in formal education is the
time spent by the students studying; this time is not used in work or leisure
and it thereby gives rise to an opportunity cost of studying.4 The second
argument of G takes work experience into account and the third argument
allows for the already obtained level of human capital to affect the strength of
the influence from sτ and `τ . Finally, the fourth argument, current calendar
time allows for changes over time in the learning technology (organization of
the learning process).
Consider an individual “born”at date v ≤ t (v for vintage). If still alive

at time t, the age of this individual is τ ≡ t−v. The obtained stock of human
capital at age τ will be

hτ = h0 +

∫ τ

0

G(sx, `x, hx, v + x)dx.

A basic supposition in the life-cycle approach is that it is possible to specify
the function G such that a person’s time-t human capital embodies a time-t
labor productivity proportional to this amount of human capital and thereby,
under perfect competition, a real wage proportional to this human capital.

3Acemoglu, 2009, p. 360.
4We may perceive the costs associated with teachers’time and educational buildings

and equipment as being either quantitatively negligible or implicit in the function symbol
G.
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Below we consider four specifications of the learning technology that one
may encounter in the literature.

EXAMPLE 1 In a path-breaking model by the Israeli economist Ben-Porath
(1967) the learning technology is specified this way:

ḣτ = g(sτhτ )− δhτ , g′ > 0, g′′ < 0, δ > 0, h0 > 0.

Here time spent in school is more effi cient in building human capital the more
human capital the individual has already. Work experience does not add to
human capital formation. The parameter δ enters to reflect obsolescence (due
to technical change) of skills learnt in school. �

EXAMPLE 2 Growiec (2010) and Growiec and Groth (2013) study the
aggregate implications of a learning technology specified this way:

ḣτ = (λsτ + ξ`τ )hτ , λ > 0, ξ ≥ 0, h0 > 0. (9.11)

Here λ measures the effi ciency of schooling and ξ the effi ciency of work ex-
perience. The effects of schooling and (if ξ > 0) work experience are here
proportional to the level of human capital already obtained by the individ-
ual (a strong assumption which may be questioned).5 The linear differential
equation (9.11) allows an explicit solution,

hτ = h0e
∫ τ
0 (λsx+ξ`x)dx, (9.12)

a formula valid as long as the person is alive. This result has some affi nity
with the “Mincer equation”, to be considered below. �

EXAMPLE 3 Here we consider an individual with exogenous and constant
leisure. Hence time available for study and work is constant and conveniently
normalized to 1 (as if there were no leisure at all). Moreover, in the beginning
of life beyond childhood the individual goes to school full-time in S time units
(years) and thereafter works full-time until death (no retirement). Thus

sτ =

{
1 for 0 ≤ τ < S,
0 for τ ≥ S.

(9.13)

We further simplify by ignoring the effect of work experience (or we may say
that work experience just offsets obsolescence of skills learnt in school). The
learning technology is specified as

ḣτ = ητ η−1sτ , η > 0, h0 ≥ 0, (9.14)

5Lucas (1988) builds on the case ξ = 0.
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If η < 1, it becomes more diffi cult to learn more the longer you have already
been to school. If η > 1, it becomes easier to learn more the longer you have
already been under education.
The specification (9.13) implies that throughout working life the individ-

ual has constant human capital equal to h0 + Sη. Indeed, integrating (9.14),
we have for t ≥ S and until time of death,

hτ = h0 +

∫ τ

0

ḣxdx = h0 +

∫ S

0

ηxη−1dx = h0 + xη|S0 = h0 + Sη. (9.15)

So the parameter η measures the elasticity of human capital w.r.t. the num-
ber of years in school. As briefly commented on in the concluding section,
there is some empirical support for the power function specification in (9.15)
and even the hypothesis η = 1 may not be rejected. �

In Example 1 there is no explicit solution for the level of human capital.
Then the solution can be characterized by phase diagram analysis (as in
Acemoglu, §10.3). In the examples 2 and 3 we can find an explicit solution
for the level of human capital. In this case the term “learning technology”is
used not only in connection with the original differential form as in (9.10), but
also for the integrated form, as in (9.12) and (9.15), respectively. Sometimes
the integrated form, like (9.15), is called a schooling technology.

EXAMPLE 4 Here we still assume the setup in (9.13) of Example 3, includ-
ing the absence of both after-school learning and gradual depreciation. But
the right-hand side of (9.14) is generalized to ϕ(τ)sτ , where ϕ(τ) is some
positively valued function of age. Then we end up with human capital after
leaving school equal to some increasing function of S :

h = h(S), where h(0) ≥ 0, h′ > 0. (9.16)

In cross-section or time series analysis it may be relevant to extend this by
writing h = ah(S), a > 0; the parameter a could then reflect quality of
schooling. In the next section we shall focus on the form (9.16). �

Before proceeding, let us briefly comment on the problem of aggregation
over the different members of the labor force at a given point in time. In
the aggregate framework of Section 9.1 multiplicity of skill types and job
types is ignored. Human capital is treated as a one-dimensional and additive
production factor. In production functions like (9.4) only aggregate human
capital, H, matters. So output is thought to be the same whether the in-
put is 2 million workers, each with one unit of human capital, or 1 million
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workers, each with 2 units of human capital. In human capital theory this
questionable assumption is called the perfect substitutability assumption or
the effi ciency unit assumption (Sattinger, 1980). If we are willing to impose
this assumption, going from micro to macro at a given point in time is con-
ceptually simple. With h denoting individual human capital and f(h) being
the density function at a given point in time (so that

∫∞
0
f(h)dh = 1), we

find average human capital in the labor force at that point in time to be
h̄ =

∫∞
0
hf(h)dh and aggregate human capital as H = h̄L, where L is the

size of the labor force. To build a theory of the evolution over time of the
density function, f(h), is, however, a complicated matter. Within as well as
across the different cohorts there is heterogeneity regarding both schooling
and retirement. And the fertility and mortality patterns are changing over
time.
If we want to open up for a distinction between different types of jobs

and different types of labor, say, skilled and unskilled labor, we may replace
the production function (9.4) with

Y = F̃ (K,h1L1, h2L2, t), (9.17)

where L1 and L2 indicate man-hours delivered by the two types of workers,
respectively, and h1 and h2 are the associated human capital levels (measured
in effi ciency units for each of the two kinds of jobs), respectively. This could
be the basis for studying skill-biased technical change.
Whether or not the aggregate human capital, H, is a useful concept or

not in connection with production can be seen as a question about whether
or not we can rewrite the production function like (9.17) as Y = F (K,H, t),
where H = h1L1 + h2L2. We can, if the two types of labor are perfectly
substitutable, otherwise not.

9.3 Choosing length of education

9.3.1 Human wealth

Consider an individual. We assume, realistically, that expected lifetime of
this individual is finite while the age at death is stochastic (uncertain) ex
ante. We further assume that independently of the already obtained age, the
probability of surviving x more time units, say years, is P (X > x) = e−mx,
where X is remaining lifetime, a stochastic variable, while m > 0 is the
mortality rate. This mortality rate is, unrealistically, assumed independent
of age (and also independent of calendar time). The mortality rate indicates
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the approximate probability of dying within one year “from now”.6

Consider our individual’s planning as seen from the time, v, of “birth”
(i.e., entering life beyond childhood). Suppose schooling is a full-time activity
and that this person plans to attend school in the first S years of life and
after that work full time until death. Let `t−v(S) denote the planned supply
of labor (hours per year) to the labor market at time t by this person. As
`t−v(S) depends on the stochastic age at death, T, `t−v(S) is itself a stochastic
variable with two possible outcomes:

`t−v(S) =

{
0 when t ≤ v + S or t > v + T,
` when v + S < t ≤ v + T,

where ` > 0 is an exogenous constant (“full-time”working).

Let wt(S) denote the real wage received per working hour delivered at
time t by a person who after S years in school works ` hours per year until
death. This allows us to write the present value as seen from time v of
expected lifetime earnings, i.e., the human wealth, for a person “born” at
time v as

HW (v, S) = 0 + Ev

(∫ v+T

v+S

wt(S)`e−r(t−v)dt

)
= 0 + Ev

(∫ ∞
v+S

wt(S)`t−v(S)e−r(t−v)dt

)
=

∫ ∞
v+S

Ev(wt(S)`t−v(S)e−r(t−v))dt,

as in this context the integration operator
∫∞
v+S

(·)dt acts like a discrete-time
summation operator,

∑∞
t=v . Here we have introduced the risk-free interest

rate r which is the relevant rate of discount for future labor income condi-

6If T denotes the uncertain age at death (a stochastic variable) and m is a nonnegative
number, the mortality rate (or “hazard rate” of death) at the age τ , denoted m(τ), is
defined as m(τ) = lim∆τ→0

1
∆τ P (T ≤ τ + ∆τ | T > τ) .

In the present model this is assumed equal to a constant, m. The unconditional prob-
ability of not reaching age τ is then P (T ≤ τ) = 1 − e−mτ ≡ F (τ). Hence the density
function is f(τ) = F ′(τ) = me−mτ and P (τ < T ≤ τ + ∆τ) ≈ me−mτ∆τ . So, for τ = 0,
P (0 < T ≤ ∆τ) ≈ m∆τ = m if ∆τ = 1. Life expectancy is E(T ) =

∫∞
0
τme−mτdτ

= 1/m. All this is like in the “perpetual-youth”overlapping generations model by Blan-
chard (1985).
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tional on being alive at the moment concerned. Hence,

HW (v, S) =

∫ ∞
v+S

wt(S)e−r(t−v) (` · P (T > t− v) + 0 · P (T ≤ t− v))dt

=

∫ ∞
v+S

wt(S)e−r(t−v)`e−m(t−v)dt

=

∫ ∞
v+S

wt(S)`e−(r+m)(t−v)dt. (9.18)

In writing the present value of the expected stream of labor income this
way, we have assumed that:

A1 The risk-free interest rate, r, is constant over time.

A2 There is no educational fee.

We now introduce two additional assumptions:

A3 Labor effi ciency (human capital) of a person with S years of schooling
is h(S), h′ > 0, so that

wt(S) = ŵth(S),

where ŵt is the real wage per unit of human capital per working hour
at time t.7

A4 Owing to Harrod-neutral technical progress at a constant rate g ∈
[0, r +m) ≥ 0, ŵt = ŵ0e

gt. So technical progress makes a given h
more and more productive (there is direct complementarity between
the technology level and human capital as in (9.5) above).

Given A3 and A4, we get from (9.18) the expected “lifetime earnings”
conditional on a schooling level S :

HW (v, S) =

∫ ∞
v+S

ŵth(S)`e−(r+m)(t−v)dt (9.19)

= ŵ0e
gvh(S)`

∫ ∞
v+S

e[g−(r+m)](t−v)dt

= ŵ0e
gvh(S)`

(
e[g−(r+m)](t−ν)

g − (r +m)

∣∣∣∣∞
ν+S

)
= ŵ0e

gνh(S)`
e[g−(r+m)]S

r +m− g .

From now on we chose measurement units such that the “normal”working
time per year is 1 rather than `.
The next question is: how do students make a living while studying?
7Cf. Example 4 of Section 9.2.
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9.3.2 A perfect credit and life annuity market

Assuming the students are born with no financial wealth and themselves have
to finance their costs of living, they have to borrow while studying. Later in
life, when they receive an income, they repay the loans with interest.
In this context we shall introduce the simplifying assumption of a perfect

credit and life annuity market. The financial sector will be unwilling to offer
the students loans at the going risk-free interest rate, r. Indeed, a creditor
faces the risk that the student dies before having paid off the debt including
the compound interest. Given the described constant mortality rate and
given existence of a perfect credit and life insurance market, it can be shown8

that the equilibrium interest rate on student loans is the “actuarial rate”,
r+m. (This result presupposes that the insurance companies have negligible
administration costs.)
If the individual later in life, after having paid off the debt and obtained a

positive net financial position, places the savings on life annuity accounts in
life insurance companies, the actuarial rate, r+m, will also be the equilibrium
rate of return received (until death) on these deposits. At death the liability
of the insurance company is cancelled.
The advantage of saving in life annuities (at least for people without a

bequest motive) is that life annuities imply a transfer of income from after
time of death to before time of death by offering a higher rate of return than
risk-free bonds, but only until the depositor dies. As mentioned, at that time
the total deposit is automatically transferred to the insurance company in
return for the high annuity payouts while the depositor was alive.9

9.3.3 Maximizing human wealth

Suppose that neither the educational process itself nor the resulting stock
of human capital enter the utility function (no “joy of going to school”, no
“joy of being a learned person”). In this perspective human capital is only
an investment good (not also a durable consumption good).10

8See Lecture notes in macroeconomics, Chapter 12.
9Whatever name is in practice used for the real world’s private pension arrangements,

including labor market pension arrangements, many of them have such life annuity ingre-
dients.
Owing to asymmetric information and related credit market imperfections, in real world

situations such loan contracts are rare. This is a reason for public sector intervention in
the provision of loans to students. These diffi culties are ignored by the present model. In
Acemoglu, pp. 761-764, credit market imperfections are considered.
10For a broader conception of human capital, see for instance Sen (1997).
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If moreover there is no utility from leisure, the educational decision can
be separated from whatever plan for the time path of consumption and sav-
ing through life the individual may decide (cf. the Separation Theorem in
Acemoglu, §10.1). That is, the only incentive for acquiring human capital is
to increase the human wealth HW (ν, S) given in (9.19).
An interior solution to the problem maxS HW (v, S) satisfies the first-

order condition:

∂HW

∂S
(v, S) =

ŵ0

r +m− g
[
h′(S)e[g−(r+m)]S − h(S)e[g−(r+m)]S(r +m− g)

]
= HW (v, S)

[
h′(S)

h(S)
− (r +m− g)

]
= 0, (9.20)

from which follows
h′(S)

h(S)
= r +m− g ≡ r̃. (9.21)

We call (9.21) the schooling first-order condition and r̃ the effective dis-
count rate for the schooling decision. In the optimal plan this equals the
effective discount rate appearing on the right-hand side of (9.21), namely the
interest rate adjusted for (a) the approximate probability of dying within
a year from “now”, 1 − e−m ≈ m; and (b) wage growth due to technical
progress. The trade-off faced by the individual is the following: increasing S
by one year results in a higher level of human capital (higher future earning
power) but postpones by one year the time when earning an income begins.
The effective interest cost is diminished by g, reflecting the fact that the real
wage per unit of human capital will grow by the rate g from the current year
to the next year.
The intuition behind the first-order condition (9.21) is perhaps easier to

grasp if we put g on the left-hand-side and multiply by ŵt in the numerator
as well as the denominator. Then the condition looks like a standard no-
arbitrage condition:

ŵth
′(S) + ŵtgh(S)

ŵth(S)
= r +m.

On the the left-hand side we have the actual approximate net rate of return
obtained by “investing one more year” in education. In the numerator we
have the direct increase in wage income by increasing S by one unit plus the
gain arising from the fact that human capital, h(S), is worth more in earnings
capacity one year later due to technical progress. In the denominator we
have the educational investment made by letting the obtained human capital,
h(S), “stay”one more year in school instead of at the labor market. Indeed,

c© Groth, Lecture notes in Economic Growth, (mimeo) 2015.



9.3. Choosing length of education 151

ŵth(S) is the size of that investment in the sense of the opportunity cost of
staying in school one more year.
In an optimal plan the actual net rate of return on the marginal invest-

ment equals the required rate of return, r+m. The required rate of return is
what could be obtained by the alternative strategy, which is to leave school
already after S years and then invest the first years’s labor income in life
annuities paying the net rate of return, r+m, per year until death. That is,
the first-order condition can be seen as a no-arbitrage equation. (As is usual,
our interpretation treats marginal changes as if they were discrete.)
Suppose S = S∗ > 0 satisfies the first-order condition (9.21). To check

the second-order condition, we consider

∂2HW

∂S2
(v, S∗)

=
∂HW

∂S
(v, S∗)

[
h′(S∗)

h(S∗)
− (r +m− g)

]
+HW (v, S∗)

h(S∗)h′′(S∗)− h′(S∗)2

h(S∗)2

= HW (v, S∗)

S∗

h′(S∗)h
′′(S∗)− S∗

h(S∗)h
′(S∗)

S∗h(S∗)
h′(S∗), (9.22)

since the first term on the right-hand side in the second row vanishes due to
(9.21) being satisfied at S = S∗. The second-order condition, ∂2HW/∂S2 < 0
at S = S∗ holds if and only if the elasticity of h w.r.t. S exceeds that of
h′ w.r.t. S at S = S∗. A suffi cient but not necessary condition for this is
that h′′ ≤ 0. Anyway, since HW (v, S) is a continuous function of S, if there
is a unique S∗ > 0 satisfying (9.21), and if ∂2HW/∂S2 < 0 holds for this
S∗, then this S∗ is the unique optimal length of education for the individual.
If individuals are alike in the sense of having the same innate abilities and
facing the same schooling technology h(·), they will all choose S∗.

EXAMPLE 5 Suppose h(S) = Sη, η > 0, as in Example 3, but with h0 = 0.
Then the first-order condition (9.21) gives a unique solution S∗ = η/(r+m−
g); and the second-order condition (9.22) holds for all η > 0. More sharply
decreasing returns to schooling (smaller η) shortens the optimal time spent
in school as does of course a higher effective discount rate, r +m− g.
Consider two countries, one rich (industrialized) and one poor (agricul-

tural). With one year as the time unit, let the parameter values be as in the
first four columns in the table below. The resulting optimal S for each of the
countries is given in the last column.

η r m g S∗

rich country 0.6 0.06 0.01 0.02 12.0
poor country 0.6 0.12 0.02 0.00 4.3
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Figure 9.1: The semi-log schooling-wage relationship for fixed t. Different coun-
tries. Source: Krueger and Lindahl (2001).

The difference in S∗ is due to r and m being higher and g lower in the poor
country. �

The above example follows a short note by Jones (2007) entitled “A sim-
ple Mincerian approach to endogenizing schooling”. The term “Mincerian
approach”should here be interpreted in a broad sense as more or less syn-
onymous with “life-cycle approach”.
Often in the macroeconomic literature, however, the term “Mincerian

approach”is identified with an exponential specification of the learning tech-
nology:

h(S) = h(0)eψS, ψ > 0. (9.23)

This exponential form can at the formal level be seen as resulting from a
combination of equation (9.11) from Example 2 and equation (9.13) from
Example 3.11 The sole basis for an exponential relationship is empirical

11One should be aware, however, that the present simple framework does not really em-
brace an exponential specification of h. Indeed, the second-order condition (9.22) implied
by the “perpetual youth”assumption of age-independent mortality and no retirement, is
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cross-sectional evidence on relative wages at a given point in time, cf. Figure
??. This is not the same as providing empirical support for an exponential
production function for human capital. As briefly commented in the con-
cluding section, there seems to be little empirical support for an exponential
production function. And in fact, as we shall now see, Mincer’s microeco-
nomic explanation of the exponential relationship (cf. Mincer, 1958, 1974)
has nothing to do with a specific production function for human capital.

9.4 Explaining the Mincer equation

In Mincer’s theory behind the observed exponential relationship called the
Mincer equation, there is no role at all for any specific schooling technology,
h(·), leading to a unique solution, S∗. The essential point is that the empir-
ical Mincer equation is based on heterogeneity in the jobs offered to people
(different educational levels not being perfectly substitutable). An exponen-
tial relationship where people, in spite of being alike ex ante, choose different
educational levels ex post can then arise through the equilibrium forces of
supply and demand in the job markets.
Imagine, first, a case where all individuals have in fact chosen the same

educational level, S∗, because they are ex ante alike and all face the same
arbitrary human capital production function, h(S), satisfying (9.22). Then
jobs that require other educational levels will go unfilled and so the job mar-
kets will not clear. The forces of excess demand and excess supply will then
tend to generate an educational wage profile different from the one presumed
in (9.19), that is, different from ŵth(S). Sooner or later an equilibrium edu-
cational wage profile tends to arise such that people are indifferent as to how
much schooling they choose, thereby allowing market clearing. This requires
a wage profile, wt(S), such that a marginal condition analogue to (9.21) holds
for all S for which there is a positive amount of labor traded in equilibrium,
say all S ∈

[
0, S̄

]
:

dwt(S)/dS

wt(S)
= r +m− g ≡ r̃ for all S ∈

[
0, S̄

]
. (9.24)

It is here assumed, in the spirit of assumption A4 above, that technical
progress implies that wt(S) for fixed S grows at the rate g, i.e., wt(S) =

incompatible with the strong convexity implied by the exponential function. Of course,
this must be seen as a limitation of the “perpetual youth”setup (where there is no con-
clusive upper bound for anyone’s lifetime) rather than a reason for rejecting apriori the
exponential specification (9.23).
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w0(S)egt, for all S ∈
[
0, S̄

]
. The equation (9.24) is a linear differential equa-

tion for wt w.r.t. S, defined in the interval 0 ≤ S ≤ S̄. And the function
wt(S), where t is fixed, is then unknown solution to this differential equation.
That is, we have a differential equation of the form dx(S)/dS = r̃x(S). This
is a differential equation where the unknown function x(S) is a function of
schooling length rather than calendar time. The solution is x(S) = x(0)er̃S.
Replacing the function x(·) with the function wt(·), we thus have the solution

wt(S) = wt(0)er̃S. (9.25)

Note that in the previous section, in the context of (9.21), we required
the proportionate marginal return to schooling to equal r̃ only for a specific
S, i.e.,

d(ŵth(S))/dS

ŵth(S)
=
h′(S)

h(S)
= r +m− g ≡ r̃ for S = S∗. (9.26)

This is only a first-order condition assumed to hold at some point, S∗. It will
generally not be a differential equation the solution of which gives a Min-
cerian exponential relationship. A differential equation requires a derivative
relationship to hold not only at one point, but in an interval for the indepen-
dent variable (S in (9.24)). Indeed, in (9.24) we require the proportionate
marginal return to schooling to equal r̃ in a whole interval of schooling lev-
els. Otherwise, with heterogeneity in the jobs offered there could not be
equilibrium.12

Returning to (9.25), by taking logs on both sides, we get

logwt(S) = logwt(0) + r̃S, (9.27)

which is the Mincer equation on log-linear form.
Empirically, the Mincer equation does surprisingly well, cf. Figure ??.13

Note that (9.25) also yields a theory of how the “Mincerian slope”, ψ, in
(9.23) is determined, namely as the mortality- and growth-corrected real
interest rate, r̃. The evidence for this part of the theory is more scarce.
Given the equilibrium educational wage profile, wt(S), the human wealth

12As I see it, Acemoglu (2009, p. 362) makes the logical error of identifying a first-order
condition, (9.26), with a differential equation, (9.24).
13The slopes are in the interval (0.05, 0.15).
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of an individual “born”at time 0 can be written

HW0 =

∫ ∞
S

wt(0)er̃Se−(r+m)tdt = er̃S
∫ ∞
S

w0(0)eḡte−(r+m)tdt

= w0(0)er̃S
∫ ∞
S

e[g−(r+m)]tdt = w0(0)er̃S
[
e[g−(r+m)]t

g − (r +m)

]∞
S

=
w0(0)

r +m− g , (9.28)

since r̃ ≡ r+m−g. In view of the adjustment of the S-dependent wage levels,
in equilibrium the human wealth of the individual is thus independent of S
(within an interval) according to the Mincerian theory. Indeed, the essence
of Mincer’s theory is that if one level of schooling implies a higher human
wealth than the other levels of schooling, the number of individuals choosing
that level of schooling will rise until the associated wage has been brought
down so as to be in line with the human wealth associated with the other
levels of schooling. Of course, such adjustment processes must in practice be
quite time consuming and can only be approximative.14

In this context, the original schooling technology, h(·), for human capital
formation has lost any importance. It does not enter human wealth in a
long-run equilibrium in the disaggregate model where human wealth is simply
given by (9.28). In this equilibrium people have different S’s and the received
wage of an individual per unit of work has no relationship with the human
capital production function, h(·), by which we started in this section.
Although there thus exists a microeconomic theory behind a Mincerian

relationship, this theory gives us a relationship for relative wages in a cross-
section at a given point in time. It leaves open what an intertemporal pro-
duction function for human capital, relating educational investment, S, to a
resulting level, h, of labor effi ciency in a macroeconomic setting, looks like.
Besides, the Mincerian slope, r̃, is a market price, not an aspect of schooling
technology.

9.5 Some empirics

In their cross-country regression analysis de la Fuente and Domenech (2006)
find a relationship essentially like that in Example 3 with η = 1.15

14Who among the ex ante similar individuals ends up with what schooling level is inde-
terminate in this setup.
15The authors find that the elasticity of GDP w.r.t. average years in school in the labor

force is at least 0.60. The empirical macroeconomic literature typically measures S as the
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Similarly, the cross-country study, based on calibration, by Bills and
Klenow (2000) as well as the time series study by Cervelatti and Sunde
(2010) favor the hypothesis of diminishing returns to schooling. According
to this, the linear term, r̃S, in the exponent in (9.23) should be replaced by
a strictly concave function of S. These findings are in accordance with the
results by Psacharopoulus (1994).

For S > 0, the power function in Example 5 can be written h = Sη = eη lnS

and is thus in better harmony with the data than the exponential function
(9.23). A parameter indicating the quality of schooling may be added: h =
aeη lnS, where a > 0 may be a function of the teacher-pupil ratio, teaching
materials per student etc. See Caselli (2005).

Outlook

Models based on the life-cycle approach to human capital typically conclude
that education is productivity enhancing, i.e., education has a level effect on
income per capita but is not a factor which in itself can explain sustained per
capita growth, cf. Exercise V.7 and V.8. Amore plausible main driving factor
behind growth seems rather to be technological innovations. A higher level
of per capita human capital may temporarily raise the speed of innovations,
however.

Final remark

Our formulation of the schooling length decision problem in Section 9.3 con-
tained several simplications so that we ended up with a static maximization
problem in Section 9.3.3. More general setups lead to truly dynamic human
capital accumulation problems.

This chapter considered human capital as a productivity-enhancing fac-
tor. There is a complementary perspective on human capital, namely the
Nelson-Phelps hypothesis about the key role of human capital for technology
adoption and technological catching up, see Acemoglu, §10.8, and Exercise
Problem V.3.

average number of years of schooling in the working-age population, taken for instance
from the Barro and Lee (2001) dataset. This means that complicated aggregation issues,
arising from cohort heterogeneity and from the fact that individual human capital is lost
upon death, are bypassed. For discussion, see Growiec and Groth (2013).
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