
Chapter 15

Stochastic erosion of

innovators’ monopoly power

In this chapter we extend the lab-equipment model of Chapter 14 by adding

stochastic erosion of innovators’ monopoly power. The motivation is the

following.

The model of Chapter 14 assumed that the innovator had perpetual

monopoly over the production and sale of the new type of intermediate good.

In practice, by legislation patents are of limited duration, 15-20 years. More-

over, it may be difficult to codify exactly the technical aspects of innovations,

hence not even within such a limited period do patents give 100% effective

protection. While the pharmaceutical industry rely quite much on patents,

in many other branches innovative firms use other protection strategies such

as concealment of the new technical design. In ICT industries copyright to

new software plays a significant role. Still, whatever the protection strategy

used, imitators sooner or later find out how to make very close substitutes.

To better accommodate these facts, the present chapter sets up a lab-

equipment model where competition in the supply of specialized intermediate

goods is more intense than in Chapter 14. For convenience we name the

model of Chapter 14 Model I. Compared with that model the only difference

in the new model is that the duration of monopoly power over the commercial

use of an invention is limited and uncertain. We name the resulting model

Model II. The notation is the same as in Model I. The analysis is related

to the brief discussion of the issues in Acemoglu’s Chapter 13.1.6 and in

particular to his Exercise 13.13.

First a recapitulation of the technological aspects of the economy.
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CHAPTER 15. STOCHASTIC EROSION OF INNOVATOR’S

MONOPOLY POWER

15.1 The three production sectors

The technology of the economy is the same as in Model I. In the basic-goods

sector (sector 1) firms combine labor and  different intermediate goods to

produce a homogeneous output good. The representative firm in the sector

has the production function

 = 

Ã
X
=1


1−
!


    0 0    1 (15.1)

where ,  and  denote output of the firm, labor input, and input of

intermediate good , respectively, where  = 1 2  . This sector, as well

as the labor market, operate under perfect competition.

The aggregate output of basic goods is used partly for replacing the basic

goods,  used in the production of intermediate goods used up in the pro-

duction of basic goods, partly for consumption,  and partly for investment

in R&D, . Hence, we have

 =  +  +  (15.2)

In the intermediate-goods sector, sector 2, at time  there are monopoly

firms, each of which supplies a particular already invented intermediate good.

Once the technical design for intermediate good  has been invented in sector

3, the inventor enters sector 2 as an innovator. Given the technical design,

the innovator can instantly transform a certain number of basic goods into a

proportional number of intermediate goods of the invented specialized kind.

That is,

it takes  units of the basic good to supply  units of intermediate good 

(15.3)

where  is a positive constant. The transformation requires no labor. Thus,

 is both the marginal and the average cost of supplying the intermediate

good . This transformation technology applies to all intermediate goods,

 = 1 2  , and all . Hence, the  in (15.2) satisfies

 ≡ 

X
=1

 ≡  (15.4)

where  is the total supply of intermediate goods, all of which are used up

in the production of basic goods.

For a limited period after the invention has been made, through secrecy

or imperfect patenting the inventor maintains monopoly power over the com-

mercial use of the invention. The length of this period is uncertain, see below.
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15.2. Temporary monopoly 265

In the R&D sector, sector 3, new “technical designs” (blueprints) for

making new specialized intermediate goods are invented. The uncertainty

associated with R&D is “ideosyncratic”. On average it takes an input of

1 units of the basic good, and nothing else, to obtain one successful R&D

outcome (an invention) per time unit. There is free entry to the R&D activ-

ity. Ignoring indivisibilities, the aggregate number of new technical designs

(inventions) in the economy per time unit is

̇ ≡ 


=    0  constant, (15.5)

where, as noted above,  is the aggregate R&D investment in terms of basic

goods delivered to sector 3 per time unit. As also noted above, after an

invention has been made, the inventor enters sector 2 as an innovator and

begins supplying the new intermediate good to firms in sector 1.

15.2 Temporary monopoly

To begin with the innovator has a monopoly over the production and sale

of the new intermediate good. This may be in the form of a more or less

effective patent (free of charge) or copyright to software or simply by secrecy

and concealment of the new technical design. But sooner or later imitators

find out how to make very close substitutes. There is uncertainty as to how

long the monopoly position of an innovator lasts.

We assume the cessation of monopoly power follows a Poisson process

with an exogenous “arrival” rate   0 the same for all monopolies.1 The

“event” which “arrives” sooner or later is “exposure to unbounded competi-

tion”. Independently of how long the monopoly position for firm  has been

maintained, the probability that it breaks down in the next time interval of

length ∆ is approximately  ·∆ for ∆ “small”. Equivalently, if  denotes

the remaining lifetime of the monopoly status of intermediate good , then

the probability that    is − for all   0 Further, the expirations of

the different monopolies are stochastically independent. The expected dura-

tion of a monopoly is
R∞
0

− = 1 We shall refer to the parameter
 as the Poisson expiration rate.

An investor (household) who contemplates to finance the R&D activity

of a prospective innovator now faces a double risk, first the risk that the

R&D is unsuccessful for a long time, second the risk that, when finally it

is successful, the monopoly profits on the resulting innovation will only last

1This approach builds on Barro and Sala-i-Martin (1995).
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for a short time. The model assumes, however, that all uncertainty is idio-

syncratic, that is, the stochastic events that an R&D lab is successful in a

certain time interval and that an innovator looses her monopoly position in a

certain time interval are uncorrelated across R&D labs, innovators, and time

and are in fact not correlated with anything in the economy. Assuming a

“large” number of both R&D labs and intermediate-goods firms still being

monopolies, investors can eliminate any risk by diversifying their investment

as described in Chapter 14. Of course, this whole setup is an abstraction and

can at best be considered a benchmark case.

As labor supply is a constant,  clearing in the labor market implies

 =  We insert this into the production function (15.1) of the repre-

sentative firm in sector 1. Maximizing profit, at time  this firm then de-

mands () = ((1− ))
1


−1
 units of intermediate good  per time

unit,  = 1 2  . As long as innovator  is still a monopolist, she faces

this downward-sloping demand curve with price elasticity −1 and sets the
price,  such that  =  (marginal revenue = marginal cost). With

the basic good as our numeraire, this amounts to

(1− 1

1
) = 

Solving for  we get

 = (1 +markup) · =
1

1− 
 ≡ 

Thereby, as long as innovator  is still a monopolist, the sales of intermediate

good  is

() = () = ((1− ))
1

−1 =

µ
(1− )2



¶1
 ≡ () (15.6)

for  = 1 2     . We shall refer to 
() as themonopoly supply of a specific

intermediate good.

The corresponding total revenue per time unit is ((1 − )) · () and
the total cost is  · (). The earned profit per time unit is thus

 = (− )() = (


1− 
− )() =



1− 
() ≡ () (15.7)

for  = 1 2     . The formulas for 
() and () are the same as those for

 and  respectively, in Model I, cf. Chapter 14.
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As described above, however, sooner or later innovator  loses the monopoly.

Thereafter intermediate good  is supplied under conditions of perfect com-

petition and its price,  is driven down to the competitive market price

level = marginal cost = . Since marginal cost,  is also average cost, the

profit vanishes. The aggregate sales of intermediate good  now supplied by

many competitors, are

() = () =

µ
(1− )



¶1
 ≡ (1−)−1() ≡ ()  () (15.8)

where () will be referred to as the competitive supply of a specific interme-

diate good. The inequality in (15.8) follows from 0    1 Economically,

the inequality in (15.8) reflects that the demand depends negatively on the

price, which is lower under perfect competition.

To summarize: In view of production and cost symmetry, each intermedi-

ate good supplied under monopolistic conditions is supplied in the amount,

() and each intermediate good supplied under competitive conditions is

supplied in the larger amount, (). That is,

 =

½
() if  is still a monopoly,

() if  is no longer a monopoly,
(15.9)

where () and () are given in (15.6) and (15.8), respectively.

15.3 The aggregate production function in equi-

librium

Substituting (15.9) into (15.1), we can write output in sector 1 as

 = 
h

()
 (())1− +

()
 (

())1−
i
 (15.10)

where 
()
 is the number of intermediate good types that at time  are still

supplied under monopolistic conditions and 
()
 is the number of intermedi-

ate good types that have become competitive. For each  we have

 = 
()
 +

()
  (15.11)

There are now two state variables in the model. There is therefore scope for

transitional dynamics, as we shall see soon.
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With the help of (15.11) and (15.8), we may rewrite (15.10):

 = 
h
( −

()
 )(

())1− +
()
 (1− )−(1−)(())1−

i


= 
h
 −

()
 +

()
 (1− )−(1−)

i
(())1−

= 
h
 + ((1− )−(1−) − 1) ()



i
(())1−

= 

"
1 + ((1− )−(1−) − 1)

()




#
(())1− (15.12)

Aggregate output is seen to depend on
()
  If the dynamics are such that


()
  tends to a positive constant, then  will tend to be proportional to

the produced “input”,  since 
() is a constant, cf. (15.6). Therefore,

the model is likely capable of generating fully endogenous growth, driven by

R&D. We come back to this below.

In the case of universal and perpetual monopoly power, 
()
 = 0 and

so (15.12) reduces to  = (())1− ≡ 
()
  which is the equilibrium

output of basic goods inModel I. Substituting this into the expression (15.12),

we see that

 =

"
1 + ((1− )−(1−) − 1)

()




#

()
  

()
  (15.13)

While in Model I, the Poisson expiration rate,  is nil, hence 
()
 = 0 for

all  here wqe have   0 so that 
()
  0 This means that a fraction of

the intermediate goods are supplied at a price equal to marginal cost thus

inducing efficient use of these. Thereby productivity is enhanced and we

get   
()
 as shown by (15.12) (where (1 − )−(1−)  1 in view of

0    1)

15.4 The no-arbitrage condition under uncer-

tainty*

All uncertainty is assumed to be ideosyncratic. By diversified investment in

R&D lotteries and the stock market, the risk-averse households can therefore

eliminate any risk and obtain the risk-free rate of return,  with certainty.

The appropriate discount rate for calculating the present value of expected

future profits in any monopoly  is this risk-free rate,  Consequently, ruling

c° Groth, Lecture notes in Economic Growth, (mimeo) 2015.



15.4. The no-arbitrage condition under uncertainty* 269

out speculative bubbles, the market value of monopoly  at time  is

 =

Z ∞



()
−  


 (15.14)

where  is the time- profit flow, now a stochastic variable as seen from

time    :

 =

½
() if firm  is still a monopolist at time  

0 otherwise.

Expected profit flow at time   as seen from time  is

() = ()−(−) + 0 · (1− −(−)) = ()−(−) (15.15)

Substituting into (15.14), we get

 = ()
Z ∞



−
 

(+) ≡  (15.16)

This market value is the same for all intermediate goods  which at time 

still retain monopoly. The expression (15.16) gives the market value in a

certainty-equivalent form. On the one hand the integral in (15.16) “treats”

the monopoly profit stream as if it were perpetual, on the other hand this

future potential profit is discounted at an effective discount rate,  + 

taking into account the probability, −(−) that at time  the ability to

earn this profit has disappeared. The  in (15.16) is an observable variable

given that the firm is still a monopoly (otherwise it has market value equal to

nil). The uncertainty is about profits in the future and the discount rate for

these equals the risk-free interest rate plus a risk premium, here equal to 

which is the approximate conditional probability that the monopoly status

breaks down in the time interval (   + 1]  given it is retained up to time

 2

At this point we face the question: how is the risk-free interest rate, 

determined? To approach an answer, it is useful to derive the no-arbitrage

condition which is implicit in (15.14). It may help intuition to think of  as

the interest rate on a market for safe loans.

By differentiating (15.16) w.r.t.  using Leibniz’s’ formula,3 we get

() + ̇
(+)



=  +  (15.17)

2This is known from the theory of a Poisson process.
3See Appendix A.
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where ̇
(+)
 is the conditional capital gain, that is, the increase per time

unit in the market value of the monopoly firm at time , conditional on its

monopoly position remaining in place also in the next moment. This formula

equalizes the instantaneous conditional rate of return per time unit on shares

in monopoly firms to the risk-free interest rate plus a premium reflecting the

risk that the monopoly position expires within the next instant.

Alternatively we may derive the no-arbitrage condition (15.17) without

appealing to Leibniz’s’ formula (which may not be part of the reader’s stan-

dard math toolbox). This alternative approach has the advantage of being

more intuitive. Let

 ≡ the firm’s earnings in the time interval ( +∆), given that the

firm is still a monopolist at time .

There will be no opportunities for arbitrage if the expected instantaneous

unconditional rate of return per time unit on shares in the monopoly firm

equals the required rate of return which is the risk-free interest rate,  This

amounts to the condition

lim∆→0
(∆)

∆


=  (15.18)

The firm’s earnings in the time interval ( +∆] is approximately ∆

This is a stochastic variable and its expected value as seen from time  is

(∆) ≈ ∆(−) + (1− ∆)(() + ̇
(+)
 )∆ (15.19)

Indeed,  is the capital loss in case the monopoly position ceases and ∆ is

the approximate probability that this event occurs within the time interval

( +∆], given that at time  it has not yet occurred. Similarly, 1− ∆ is

the approximate probability that a monopoly position retained up to time 

remains in force at least up to time +∆ And (()+ ̇
(+)
 )∆ is the total

return in that case. Now, (15.19) can be written:

(∆) ≈ −∆ + (
() + ̇

(+)
 )∆− (() + ̇

(+)
 )(∆)2(15.20)

= (() + ̇
(+)
 − )∆− (() + ̇

(+)
 )(∆)2 ⇒

(∆)

∆
≈ () + ̇

(+)
 −  − (() + ̇

(+)
 )∆

→ () + ̇
(+)
 −  for ∆→ 0

Hence, the condition (15.18) implies the no-arbitrage condition

lim∆→0
(∆)

∆


=

() + ̇
(+)
 − 


=  (15.21)

Reordering, we see that this is the same condition as (15.17).
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15.5 The equilibrium rate of return when R&D

is active

At the aggregate level, by the law of large numbers, the cost of making ̇

inventions per time unit at time  is  = ̇ basic goods per time unit.

The expected cost per invention is thus 1. An equilibrium with active

R&D therefore requires4

 = 1 ≡  (15.22)

So the market value of a monopoly firm is constant as long as the monopoly

position is upheld. The conditional capital gain, ̇
(+)
  is therefore zero,

whereby substituting (15.22) into (15.21) and applying (15.7) yields

 = ()−  = 


1− 
()−  ≡ ∗ ≡ ()−   () ≡ () (15.23)

where () is the equilibrium interest rate that would apply in case of per-

petual monopoly as in Model I.

Like in Model I, the equilibrium interest rate in Model II is thus from the

beginning a constant, ∗. In view of   0 (15.23) shows that ∗  ()

Because of the limited duration of monopoly power in our present model, the

expected rate of return on investing in R&D is smaller than in the case of no

erosion of monopoly power as in Model I.

The description of the household sector is as in Model I, except that now

per capita financial wealth is

 =

()
 




Indeed, now only 
()
 = −

()
 firms have positive market value, namely

the firms that supply intermediate goods under monopolistic conditions. The

households’ first-order condition lead to the Keynes-Ramsey rule

̇


=
1


(∗ − ) =

1


(() − − ) ≡ ∗  ()  (15.24)

where 
()
 is the per capita consumption growth rate from Model I, the case

of perpetual monopoly.

In order to have a model with growth, we assume parameters are such

that ∗  0 In addition, to avoid unbounded utility and help fulfillment of

4A more detailed argument is given in Chapter 14.
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the households’ transversality condition, we assume   (1−)∗  These two
conditions amount to the parameter restrictions

()  +  and (A1)

  (1− )∗ = (1− )
1


(() − − ) (A2)

respectively, where () ≡ (1 − )−1()  0 (from (15.7)), with () ≡
(((1− )2))

1
  0 (from (15.6)). The set of parameter combinations

satisfying these two conditions is not empty. Indeed, for arbitrary values of

 and the parameters entering () choose for instance  = 0 and   0 so

that (A1) is satisfied. Then ∗  0 and (A2) is satisfied for any   1
(A1) requires that the “growth engine” of the economic system, as deter-

mined in particular by   and , is “powerful enough” for growth to arise.

Below we return to what exactly constitutes the growth engine in this model.

Suffice it to say here that increases in   and  augment the strength of

the growth engine (thereby making (A1) more likely to hold) while a rise in

 reduces the strength of the growth engine (thereby making (A1) less likely

to hold).5

15.6 Transitional dynamics*

Given that cessations of individual monopolies follow the assumed indepen-

dent Poisson processes with expiration rate , the aggregate number of tran-

sitions per time unit from monopoly to competitive status follow a Poisson

process with arrival rate 
()
  The expected number of transitions per time

unit from monopoly to competitive status is then

̇
()
 = 

()
 

Assuming 
()
 is “large”, the difference between actual and expected tran-

sitions per time unit will be negligible (by the law of large numbers), and we

simply write

̇
()
 = 

()
 = ( −

()
 ) (15.25)

Let the fraction of intermediate goods supplied under competitive con-

ditions be denoted  ≡ 
()
  ( for “share”) and let  ≡ ̇ for any

positively-valued variable  Then, taking logs and differentiating w.r.t. 

5In view of () ≡ (1−)−1((1−)2)1−1 this role of  is due to 1−1 

0.
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we get

 = () −  = 
 −

()



()


−  = (−1 − 1)− 

= −1 − (+ ) R 0 for  Q


+ 
 (15.26)

where the second equality is implied by (15.25).

The general law of movement of  is given by (15.5), which, together

with (15.2) and (15.13) and the definition ̃ ≡ 

 implies that

̇ =  = ( − − ) = 
n
 − (

()
 () +

()
 ())− 

o
= 

(Ã
1 + ((1− )−(1−) − 1)

()




!

()
 − (( −

()
 )

() +
()
 ())− 

)

= 

(
(1 + ((1− )−(1−) − 1))

()




− () + (() − ()))− ̃

)


= 
©¡
1 + ((1− )−(1−) − 1)

¢
(())1− − ()

+
£
() − (1− )−1()

¤
)− ̃

ª
 (by (15.8))

= 
©
(())1− − ()

+
£
((1− )−(1−) − 1)(())1− − ((1− )−1 − 1)()¤  − ̃

ª


≡  (1 +2 − ̃)

where the constants 1 and 2 are implicitly defined. The growth rate of 

can thus be written

 =  (1 +2 − ̃)  (15.27)

We now construct the implied dynamic system in the endogenous vari-

ables  and ̃ From (15.26) follows ̇ =  − ( + ) which combined

with (15.27) yields

̇ = − (+  (1 +2 − ̃))  (15.28)

Similarly, from ̃ ≡  follows
·
̃̃ =  −  = ∗ −   by (15.24). So,

·
̃ = (

∗
 −  (1 +2 − ̃)) ̃ (15.29)

The differential equations (15.28) and (15.29) constitute a dynamic system

with two endogenous variables,  and ̃ the first of which is predetermined

while the second is a jump variable (forward-looking variable).
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15.7 Long-run growth

In a steady state (̇ = 0 =
·
̃), by definition of ̃ we must have  = 

where  = ∗  cf. (15.24). In steady state, therefore,  = ∗  Consequently,
in view of (15.26), the steady-state value of  is

∗ =


+ ∗
 (15.30)

Finally, the steady-state value of ̃ is ̃
∗ = (1 +2

∗ − ∗)
In the steady state there is balanced growth in the sense that   


()
 , and  grow at the same constant rate as  namely the rate 

∗
 given in

(15.24). This follows from the constancy of ̃ and  (≡  ()) in steady state

together with the expression (15.13) for the aggregate production function

in sector 1.

Moreover, the total supply of intermediate goods per time unit in the

steady state is

 = 
()
 () +

()
 () = ( −

()
 )

() +
()
 ()

=
£
(1− ∗)() + ∗()

¤


So, in the steady state,  is proportional to . And by (15.2), the delivery

of basic goods to sector 2 is  =  per time unit, which is thus also

proportional to  in the steady state. Hence, in steady state both  and

 grow at the same rate as  the rate 
∗
 

The same is true for the R&D investment. Indeed, in steady state, 

= ̇ = ∗ As shown in Appendix B, where also a phase diagram is

sketched, the steady state is a saddle point. An only half-finished dynamic

analysis in that appendix suggests that for any given initial 
()
0 0 ∈ (0 1)

there exists a unique solution to the model and it converges to the steady

state for →∞, that is, saddle-point stability prevails.
So also Model II generates fully endogenous growth. The long-run per

capita growth rate equals ∗  defined in (15.24). What makes fully endoge-
nous growth possible is again that the “growth engine” of the economy fea-

tures constant returns to scale w.r.t. producible inputs. Recall that the

growth engine of a model is defined as the set of input-producing sectors

using their own output as input. The present model can be reduced to two

sectors that make up the growth engine. Indeed, the factor 
()
 in the

aggregate production function of sector 1 given in (15.13) can be written


()
 = (

())1−

 = 

³

()
 

´1−



  (15.31)
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where 
() is the total input of intermediates in the production of ba-

sic goods in case of universal monopoly power as in Model I, and 
()
 is

the corresponding required input of basic goods as raw material in its own

production, cf. (15.4). In this way sector 2 can be considered integrated

in sector 1. On this basis, the so delineated sector 1, together with sec-

tor 3, constitutes the growth engine of the present model. Basic goods, 

=  +  +  and technical knowledge, represented by the number,  of

varieties of intermediate goods, are the two kinds of output that enter their

own production as inputs. Sector 1 delivers the input flow  to itself and

the input flow  to sector 3. And sector 3 delivers the input flow  to sector

1. The production functions (15.13) (with 
()
  = ∗ and  ()

 written as

in (15.31)) and (15.5) show that in steady state there are constant returns

to scale w.r.t. these two producible inputs. It is this property that generates

fully endogenous growth in the model.

The long-run per capita growth rate depends on those parameters that

also appear in Model I in qualitatively the same way as in that model, see

Chapter 14. In Model II, however, the long-run per capita growth rate is

smaller than in Model I with perpetual monopolies, cf. (15.24). This is

due to the new parameter, the Poisson expiration rate  Indeed, (15.24)

indicates that a larger  i.e., a smaller expected duration, 1 of the status

as a monopolist, implies a lower per capita growth rate, ∗  The reason is that
the erosion of monopoly power implies less protection of private ownership

of the inventions. This reduces the private profitability of R&D and thereby

the incentive to do R&D.

15.8 Economic policy

At the theoretical level the analysis exposes the presence of static and dy-

namic distortions. Compared with perpetual monopoly, erosion of monopoly

powermitigates the static inefficiency problem arising from prices above mar-

ginal cost, as described in Section 15.3. But erosion of monopoly power ag-

gravates the underinvestment in R&D and thereby the dynamic distortion

in the system. In this way long-run growth (within these multiple-sector

AK-style models) is reduced even more, relative to the social optimum, than

in the case of perpetual monopolies.

At the empirical level, for instance Jones and Williams (1998) estimate

that R&D investment in the U.S. economy is only about a fourth of the social

optimum. So government intervention seems definitely motivated.
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A social planner

Letting () denote the growth rate under perpetual monopoly as in Model

I, we have

∗  ()   =
1



µ




1− 
() − 

¶
 (15.32)

where () is the competitive supply of each intermediate-good type, defined

in (15.8), and  is the optimal growth rate from the point of view of an

“all-knowing and all-powerful” social planner with the same criterion function

as that of the representative household. The first inequality in (15.32) was

shown above and the second is shown in Exercise VII.4. While the formal

derivation of the social planner’s solution is dealt with in that exercise, here

we shall consider the issues in more intuitive terms.

The first policy problem is that in the market economy, the invented

specialized intermediate goods are, at least to begin with, priced above the

private marginal cost,  which is also the social marginal cost. Consequently,

under laissez faire, these goods are not supplied and used up to the point

where their marginal productivity equals their social marginal cost. A “free”

potential productivity gain is left unexploited in the economy.

A second problem is that this “static distortion” leads to a “dynamic

distortion”. Indeed, the fact that “too little” of the specialized intermediate

goods is demanded means that the market for each variety is “too small”.

This results in too little profits to the suppliers of these goods, hence too

little market value of inventions, that is, too little remuneration of the R&D

activity. Consequently, there is too little incentive to do R&D, and even the

growth rate () in model I ends up smaller than the social optimum. On

top of this comes in Model II that the imperfect protection of innovations

reduces the incentive to do R&D further, and the growth rate ends up even

lower than in Model I.

Returning to the static distortion, from the social planner’s point of view

the aggregate production function in the basic-goods sector can in the re-

duced form be written

 = ()
1−


 = −(1−)

1−

 

which is analogue to (15.31). Given  =  + + for fixed  the social

planner wants to choose the “raw material” input  so as to maximize what

is left for final use, + i.e., consumption plus investment. The first-order

condition is

( −)



= (1− )−(1−)
−


 − 1 = 0
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and obviously 2( −)(
2
 )  0 Solving for  gives

 =

µ
(1− )



¶1
 = 

()

where the last equality comes from (15.8). This shows that society should, as

expected, supply each of the  intermediate good types in the competitive

amount () rather than supply 
()
 of them in the amount ()  () as in

Model II or, even worse, supply all  intermediate good types in the amount

() as in Model I.

Policy instruments

To counteract the monopolist price distortion and encourage demand for

monopolized intermediate goods, a subsidy at constant rate  to purchases of

monopolized intermediate goods will work. By setting  =  the monopoly

pricing is exactly neutralized from the point of view of the buyer who will

have to pay (1− ) = (1− )(1− ) =  which is the marginal cost of

supplying the good. This solves the static efficiency problem.

In Model I, solving this problem can be shown to automatically solve,

indirectly, also the dynamic efficiency problem. In Model II, solving the static

efficiency problem will also encourage R&D but, because of the imperfect

protection of innovations, not to the extent needed to get the optimal (first-

best) solution. A second policy instrument is needed. A direct stimulus in

the form of a subsidy to R&D investment is called for.

By comparing with the social planner’s allocation, it is possible to find

exact formulas for this R&D subsidy rate as well as non-distortionary financ-

ing such that the social planner’s allocation is implemented in a decentralized

way. Taxation on consumption and labor income are workable in these mod-

els.

Dilemmas in the design of patent systems

There are many dilemmas regarding how to design patent systems. Model

II above illustrates one of them, namely the question what the period length

of patents should be. The inverse of  can be interpreted as a measure of

the average duration of patents. A larger  (shorter duration) reduces static

inefficiency in an economy described by Model II but it also aggravates the

underinvestment in R&D and thereby increases the dynamic inefficiency in

the economy. We could more generally interpret  as reflecting strictness of

antitrust policy and the conclusion would be similar.
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Going outside the present specific model, there are many further aspects

to take into account, e.g., spill-over effects of R&D and intensional knowledge

sharing, which we shall not consider here. A survey is contained in Hall and

Harhoff (2012). We end this chapter by a citation from Wikipedia (07-05-

2015):

Legal scholars, economists, scientists, engineers, activists, poli-

cymakers, industries, and trade organizations have held differing

views on patents and engaged in contentious debates on the sub-

ject. Recent criticisms primarily from the scientific community

focus on the core tenet of the intended utility of patents, as now

some argue they are retarding innovation. Critical perspectives

emerged in the nineteenth century, and recent debates have dis-

cussed the merits and faults of software patents, nanotechnology

patents and biological patents. These debates are part of a larger

discourse on intellectual property protection which also reflects

differing perspectives on copyright.

15.9 Appendix

A. Deriving (15.17) on the basis of Leibniz’s formula

We shall apply Leibniz’s formula6 which says:

 () =

Z ()

()

( ) =

 0() = (() )0()− (() )0() +
Z ()

()

 (  )




In the present case we have from (15.16),  = () (), where

 () =

Z ∞



−
 

(+)

whereby () = ∞ and () = , so that 0() = 0 and 0() = 1 We get

̇
(+)
 = () 0() that is,

̇
(+)


()
=  0() = 0− −

 

(+) +

Z ∞



−
 

(+)( + )

= −1 + ( + ) () = −1 + ( + )


()


6For details, see for instance Sydsæter et al. (2008).
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Reordering gives

() + ̇
(+)



=  + 

which is the no-arbitrage condition (15.17).

B. Stability analysis

The Jacobian matrix, evaluated in the steady state, is

∗ =

"
̇ ̇̃


·
̃ 

·
̃̃

#
|(̃)=(∗̃∗)

=

∙ −(+  + 2
∗) ∗

−2̃∗ ̃∗

¸


The determinant of this matrix is

det ∗ = −(+  + 2
∗)̃∗ + ∗2̃

∗ = −(+ )̃
∗  0

Hence, the eigenvalues are of opposite sign and the steady state is a saddle

point. A possible configuration of the phase diagram is sketched in Fig. 15.1.

In the steady state the TVC of the households is satisfied in that


−∗ =


()
 


−

∗ =

()



−

∗ =
 −

()



−

∗

=
(1− )


−

∗ =
(1− ∗)0

∗ 


−

∗ → 0 for →∞

since ∗ ≡ () −  so that (A2) combined with (15.24) implies ∗  ∗  The
TVC is therefore also satisfied along the unique converging path.
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Figure 15.1: Phase diagram.
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