
Economic Growth Lecture Note 2

08.02.2012. Christian Groth

Terminology concerning technology.

Continuous time modeling

In the lecture yesterday I presented the terminology around technology which I find

useful and will use in the lectures. Section 1 of this lecture note is a recapitulation

of this and of how it relates to some of the definitions in Acemoglu’s book. Section 2

provides a refresher of stuff that should be well-known from earlier courses in micro- and

macroeconomics. Section 3 can be used as a formula manual for the case of CRS. Finally,

in Section 4 we describe the transition from discrete time to continuous time analysis.

1 A two-factor production function

Consider a two-factor production function given by

 =  () (1)

where  is output (value added) per time unit,  is capital input per time unit, and  is

labor input per time unit ( ≥ 0  ≥ 0). We may think of (1) as describing the output of
a firm, a sector, or the economy as a whole. It is in any case a very simplified description,

ignoring the heterogeneity of output, capital, and labor. Yet, for many macroeconomic

questions it may be a useful first approach. Note that in (1) not only  but also  and 

represent flows, that is, quantities per unit of time. If the time unit is one year, we think

of as measured in machine hours per year. Similarly, we think of  as measured in labor

hours per year. Unless otherwise specified, it is understood that the rate of utilization of

the production factors is constant over time and normalized to one for each production

factor (cf. Exercise Problem I.3).

By definition,  and  are non-negative. It is generally understood that a production

function,  =  () is continuous and that  (0 0) = 0 (no input, no output). Some-

times, when specific functional forms are used to represent a production function, that

function may not be defined at points where  = 0 or  = 0 or both. In such a case we
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adopt the convention that the domain of the function is understood extended to include

such boundary points whenever it is possible to assign function values to them such that

continuity is maintained. For instance the function  () = +(+) where

  0 and   0 is not defined at () = (0 0) But by assigning the function value 0

to the point (0 0) we maintain continuity (and the “no input, no output” property).

1.1 A neoclassical production function

We call the production function neoclassical if for all () with   0 and   0 the

following additional conditions are satisfied:

(a)  () has continuous first- and second-order partial derivatives satisfying:

  0   0 (2)

  0   0 (3)

(b)  () is strictly quasiconcave (i.e., the level curves, also called isoquants, are

strictly convex to the origin).

In words: (a) says that a neoclassical production function has continuous substitution

possibilities between and  and themarginal productivities are positive, but diminishing

in own factor. Thus, for a given number of machines, adding one more unit of labor,

adds to output, but less so, the higher is already the labor input. And (b) says that

every isoquant,  () = ̄  has a form qualitatively similar to that shown in Fig. 1.

When we speak of for example  as the marginal productivity of labor, it is because the

“pure” partial derivative,  =  has the denomination of a productivity (output

units/yr)/(man-yrs/yr). It is quite common, however, to refer to  as the marginal

product of labor. Then a unit marginal increase in the labor input is understood: ∆

≈ ()∆ =  when ∆ = 1 Similarly,  can be interpreted as the marginal

productivity of capital or as the marginal product of capital. In the latter case it is

understood that ∆ = 1 so that ∆ ≈ ()∆ = 

1.2 The marginal rate of substitution

Given a neoclassical production function  we consider the isoquant defined by  () =

̄  where ̄ is a positive constant. The marginal rate of substitution, , of  for

2



 

KLMRS  

/K L  

L  

K  

( , )F K L Y  

L  

K  

Figure 1:  as the absolute slope of the isoquant.

 at the point () is defined as the absolute slope of the isoquant at that point, cf.

Fig. 1. The equation  () = ̄ defines  as an implicit function of  By implicit

differentiation we find () +() = 0 from which follows

 = −
 |=̄ =

()

()
 0 (4)

That is, measures the amount of  that can be saved (approximately) by apply-

ing an extra unit of labor. In turn, this equals the ratio of the marginal productivities of

labor and capital, respectively.1 Since  is neoclassical, by definition  is strictly quasi-

concave and so the marginal rate of substitution is diminishing as substitution proceeds,

i.e., as the labor input is further increased along a given isoquant. Notice that this feature

characterizes the marginal rate of substitution for any neoclassical production function,

whatever the returns to scale (see below).

When we want to draw attention to the dependency of the marginal rate of substi-

tution on the factor combination considered, we write () Sometimes in the

literature, the marginal rate of substitution between two production factors,  and  is

called the technical rate of substitution in order to distinguish from a consumer’s marginal

rate of substitution between two consumption goods.

As is well-known from microeconomics, a firm that minimizes production costs for

a given output level and given factor prices, will choose factor combination such that

 equals the ratio of the factor prices. If  () is homogeneous of degree , then

the marginal rate of substitution depends only on the factor proportion and is thus the

same at any point on the ray  = (̄̄) That is, in this case the expansion path is a

straight line.

1The subscript
¯̄
 = ̄ in (4) indicates that we are moving along a given isoquant,  () = ̄ 
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1.3 The Inada conditions

A continuously differentiable production function is said to satisfy the Inada conditions2

if

lim
→0

() = ∞ lim
→∞

() = 0 (5)

lim
→0

() = ∞ lim
→∞

() = 0 (6)

In this case, the marginal productivity of either production factor has no upper bound

when the input of the factor becomes infinitely small. And the marginal productivity is

vanishing when the input of the factor increases without bound. Actually, (5) and (6)

express four conditions, which it is preferable to consider separately and label one by one.

In (5) we have two Inada conditions for  (the marginal productivity of capital), the

first being a lower, the second an upper Inada condition for . And in (6) we have

two Inada conditions for  (the marginal productivity of labor), the first being a

lower, the second an upper Inada condition for . In the literature, when a sentence

like “the Inada conditions are assumed” appears, it is sometimes not made clear which,

and how many, of the four are meant. Unless it is evident from the context, it is better

to be explicit about what is meant.

The definition of a neoclassical production function we gave above is quite common in

macroeconomic journal articles and convenient because of its flexibility. Some economic

growth textbooks, including Acemoglu’s, define a neoclassical production function more

narrowly by including the Inada conditions as a requirement for calling the production

function neoclassical. In contrast, when in a given context we need one or another Inada

condition, we state it explicitly as an additional assumption.

2 Returns to scale

If all the inputs are multiplied by some factor, is output then multiplied by the same

factor? There may be different answers to this question, depending on circumstances. We

consider a production function  () where   0 and   0 Then  is said to have

constant returns to scale (CRS for short) if it is homogeneous of degree one, i.e., if for all

() and all   0

 ( ) =  ()

2After the Japanese economist Ken-Ichi Inada, 1925-2002.
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As all inputs are scaled up or down by some factor, output is scaled up or down by the

same factor. In their definition of a neoclassical production function some textbooks,

including Acemoglu’s, add constant returns to scale as a requirement. In contrast, when

in a given context we need an assumption of constant returns to scale, this is stated as

an additional assumption.

The assumption of CRS is often defended by the replication argument. Before dis-

cussing this argument, lets us define the two alternative “pure” cases.

The production function  () is said to have increasing returns to scale (IRS for

short) if, for all () and all   1,

 ( )   ()

That is, IRS is present if, when all inputs are scaled up by some factor, output is scaled

up by more than this factor. The existence of gains by specialization and division of

labor, synergy effects, etc. sometimes speak in support of this assumption, at least up

to a certain level of production. The assumption is also called the economies of scale

assumption.

Another possibility is decreasing returns to scale (DRS). This is said to occur when

for all () and all   1

 ( )   ()

That is, DRS is present if, when all inputs are scaled up by some factor, output is scaled

up by less than this factor. This assumption is also called the diseconomies of scale

assumption. The underlying hypothesis may be that control and coordination problems

confine the expansion of size. Or, considering the “replication argument” below, DRS

may simply reflect that behind the scene there is an additional production factor, for

example land or a irreplaceable quality of management, which is tacitly held fixed, when

the factors of production are varied.

EXAMPLE 1 The production function

 =    0 0    1 0    1 (7)

where   and  are given parameters, is called a Cobb-Douglas production function.

The parameter  depends on the choice of measurement units; for a given such choice

it reflects the “total factor productivity”. As an exercise, the reader should verify that

(7) satisfies (a) and (b) above and is therefore a neoclassical production function. The
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function in (7) is homogeneous of degree +. If + = 1 there are CRS. If +  1

there are DRS, and if  +   1 there are IRS. Note that  and  must be less than 1

in order not to violate the diminishing marginal productivity condition. ¤

EXAMPLE 2 The production function

 = min()   0   0 (8)

where  and  are given parameters, is called a Leontief production function or a fixed-

coefficients production function;  and are called the technical coefficients. The function

is not neoclassical, since the conditions (a) and (b) are not satisfied. Indeed, with this

production function the production factors are not substitutable at all. This case is also

known as the case of perfect complementarity. The interpretation is that already installed

production equipment requires a fixed number of workers to operate it. The inverse of the

parameters and indicate the required capital input per unit of output and the required

labor input per unit of output, respectively. Extended to many inputs, this type of

production function is often used in multi-sector input-output models (also called Leontief

models). In aggregate analysis neoclassical production functions, allowing substitution

between capital and labor, are more popular than Leontief functions. But sometimes the

latter are preferred, in particular in short-run analysis with focus on the use of already

installed equipment where the substitution possibilities are limited. As (8) reads, the

function has CRS. A generalized form of the Leontief function is  = min( )

where   0. When   1 there are DRS, and when   1 there are IRS. ¤

2.1 The replication argument

The assumption of CRS is widely used in macroeconomics. The model builder may appeal

to the replication argument saying that by, conceptually, doubling all the inputs, we

should always be able to double the output, since we just “replicate” what we are already

doing. One should be aware that in principle the CRS assumption is about technology −
limits to the availability of resources is another question. The CRS assumption and the

replication argument presuppose that all the relevant inputs are explicit as arguments

in the production function and that these are changed equiproportionately. Concerning

our present production function  (·), one could easily argue that besides capital and
labor, also land is a necessary input and should appear as a separate argument.3 Then,

3We think of “capital” as producible means of production, whereas “land” refers to non-producible

natural resources, including for example building sites. If an industrial firm decides to duplicate what it
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on the basis of the replication argument we should in fact expect DRS wrt. capital and

labor alone. In manufacturing and services, empirically, this and other possible sources

for departure from CRS may be minor and so many macroeconomists feel comfortable

enough with assuming CRS wrt.  and  alone, at least as a first approximation. This

approximation is, however, less applicable to poor countries, where natural resources may

be a quantitatively important production factor and an important part of national wealth.

Another problem with the replication argument is the following. The CRS claim is

that by changing all the inputs equiproportionately by any positive factor  which does

not have to be an integer, the firm should be able to get output changed by the same

factor. Hence, the replication argument requires that indivisibilities are negligible, which

is certainly not always the case. In fact, the replication argument is more an argument

against DRS than for CRS in particular. The argument does not rule out IRS due to

synergy effects as size is increased.

Sometimes the replication line of reasoning is given a more precise form. This gives

occasion for introducing a useful local measure of returns to scale.

2.2 The elasticity of scale

To allow for indivisibilities and mixed cases (for example IRS at low levels of production

and CRS or DRS at higher levels), we need a local measure of returns to scale. One

defines the elasticity of scale, () of  at the point () where  ()  0 as

() =


 ()

 ( )


≈ ∆ ( ) ()

∆
 evaluated at  = 1 (9)

So the elasticity of scale at a point () indicates the (approximate) percentage increase

in output when both inputs are increased by 1 per cent. We say that

if ()

⎧⎨⎩  1 then there are locally IRS,

= 1 then there are locally CRS,

 1 then there are locally DRS.

(10)

The production function may have the same elasticity of scale everywhere. This is the

case if and only if the production function is homogeneous. If  is homogeneous of degree

 then () =  and  is called the elasticity of scale parameter.

Note that the elasticity of scale at a point () will always equal the sum of the

has been doing, it needs a piece of land to build another plant like the first.
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Figure 2: Locally CRS at optimal plant size.

partial output elasticities at that point:

() =
()

 ()
+

()

 ()
 (11)

This follows from the definition in (9) by taking into account that

 ( )


= ( ) + ( )

= () + () when evaluated at  = 1

Fig. 2 illustrates a popular case from microeconomics, a U-shaped average cost curve

from the perspective of the individual firm (or plant): at low levels of output there are

falling average costs (thus IRS), at higher levels rising average costs (thus DRS). Given

the input prices,  and  and a specified output level, ̄  we know that the cost

minimizing factor combination (̄ ̄) is such that (̄ ̄)(̄ ̄) =   From

microeconomics we know that the elasticity of scale at (̄ ̄) will satisfy:

(̄ ̄) =
(̄ )

(̄ )
 (12)

where (̄ ) is average costs (the minimum unit cost associated with producing ̄ )

and (̄ ) is marginal costs at the output level ̄ . The  in  and  stands

for “long-run”, indicating that both capital and labor are considered variable production

factors within the period considered. At the optimal plant size,  ∗ there is equality

between  and , implying a unit elasticity of scale, that is, locally we have CRS.

This provides a more subtle replication argument for CRS at the aggregate level. Even

though technologies may differ across firms, the surviving firms in a competitive market

will have the same average costs at the optimal plant size. In the medium and long

run, changes in aggregate output will take place primarily by entry and exit of optimal-

size plants. Then, with a large number of relatively small plants, each producing at
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approximately constant unit costs for small output variations, we can without substantial

error assume constant returns to scale at the aggregate level. So the argument goes.

Notice, however, that even in this form the replication argument is not entirely convincing

since the question of indivisibility remains. The optimal plant size may be large relative

to the market − and is in fact so in many industries. Besides, in this case also the perfect
competition premise breaks down.

The empirical evidence concerning returns to scale is mixed (see the literature notes

at the end of the chapter). Notwithstanding the theoretical and empirical ambiguities,

the assumption of CRS wrt. capital and labor has a prominent role in macroeconomics.

In many contexts it is regarded as an acceptable approximation and a convenient simple

background for studying the question at hand.

3 Properties of the production function under CRS

Expedient inferences of the CRS assumption include:

(i) marginal costs are constant and equal to average costs (so the right-hand side of

(12) equals unity);

(ii) if production factors are paid according to their marginal productivities, factor

payments exactly exhaust total output so that pure profits are neither positive nor

negative (so the right-hand side of (11) equals unity);

(iii) a production function known to exhibit CRS and satisfy property (a) from the

definition of a neoclassical production function above, will automatically satisfy

also property (b) and consequently be neoclassical;

(iv) a neoclassical two-factor production function with CRS has always   0 i.e., it

exhibits “gross-complementarity” between  and ;

(v) a two-factor production function known to have CRS and be twice continuously

differentiable with positive marginal productivity of each factor everywhere in such

a way that all isoquants are strictly convex to the origin, must have diminishing

marginal productivities everywhere.4

4Proofs of these claims are in the Appendix to Chapter 2 of my Lecture Notes in Macroeconomics.
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A principal implication of the CRS assumption is that it allows a reduction of di-

mensionality. Considering a neoclassical production function,  =  () with   0

we can under CRS write  () =  ( 1) ≡ () where  ≡  is the capital

intensity and () is the production function in intensive form (sometimes named the per

capita production function). Thus output per unit of labor depends only on the capital

intensity:

 ≡ 


= ()

When the original production function  is neoclassical, under CRS the expression for

the marginal productivity of capital simplifies:

() =



=

 [()]


=  0()




=  0() (13)

And the marginal productivity of labor can be written

() =



=

 [()]


= () +  0()




= () +  0()(−−2) = ()−  0() (14)

A neoclassical CRS production function in intensive form always has a positive first deriv-

ative and a negative second derivative, i.e.,  0  0 and  00  0 The property  0  0 follows

from (13) and (2). And the property  00  0 follows from (3) combined with

() =
 0()


=  00()



=  00()

1




For a neoclassical production function with CRS, we also have

()−  0()  0 for all   0 (15)

as well as

lim
→0

[()−  0()] = (0) (16)

Indeed, from the mean value theorem5 we know there exists a number  ∈ (0 1) such
that for any given   0 we have ()− (0) =  0() From this follows ()−  0()

= (0)  () −  0() since  0()   0() by  00  0. In view of (0) ≥ 0 this

establishes (15) And from ()  ()−  0()  (0) and continuity of  follows (16).

Under CRS the Inada conditions for  can be written

lim
→0

 0() =∞ lim
→∞

 0() = 0 (17)

5This theorem says that if  is continuous in [ ] and differentiable in ( ) then there exists at

least one point  in ( ) such that  0() = (()− ())( − )
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An input which must be positive for positive output to arise is called an essential input.

The second part of (17), representing the upper Inada condition for under CRS, has

the implication that labor is an essential input; but capital need not be, as the production

function () = + (1 + )   0   0 illustrates. Similarly, under CRS the upper

Inada condition for  implies that capital is an essential input.6 Combining these

results, when both the upper Inada conditions hold and CRS obtains, then both capital

and labor are essential inputs.7

Fig. 3 is drawn to provide an intuitive understanding of a neoclassical CRS produc-

tion function and at the same time illustrate that the lower Inada conditions are more

questionable than the upper Inada conditions. The left panel of Fig. 3 shows output per

unit of labor for a CRS neoclassical production function satisfying the Inada conditions

for . The () in the diagram could for instance represent the Cobb-Douglas func-

tion in Example 1 with  = 1 −  i.e., () =  The right panel of Fig. 3 shows a

non-neoclassical case where only two alternative Leontief techniques are available, tech-

nique 1:  = min(11) and technique 2:  = min(22) In the exposed case it is

assumed that 2  1 and 2  1 (if 2 ≥ 1 at the same time as 2  1 technique

1 would not be efficient, because the same output could be obtained with less input of

at least one of the factors by shifting to technique 2). If the available  and  are such

that   11 or   22, some of either  or  respectively, is idle. If, however,

the available  and  are such that 11    22 it is efficient to combine the

two techniques and use the fraction  of  and  in technique 1 and the remainder in

technique 2, where  = (22 − )(22 − 11) In this way we get the “labor

productivity curve” OPQR (the envelope of the two techniques) in Fig. 3. Note that

for  → 0  stays equal to 1  ∞ whereas for all   22  = 0 A

similar feature remains true, when we consider many, say  alternative efficient Leontief

techniques available. Assuming these techniques cover a considerable range wrt. the 

ratios, we get a labor productivity curve looking more like that of a neoclassical CRS

production function. On the one hand, this gives some intuition of what lies behind the

assumption of a neoclassical CRS production function. On the other hand, it remains true

that for all     = 08 whereas for  → 0  stays equal to 1  ∞

thus questioning the lower Inada condition.

6Proofs of these claims are in the Appendix to Chapter 2 of my Lecture Notes in Macroeconomics.
7Given a Cobb-Douglas production function, both production factors are essential whether we have

DRS, CRS, or IRS.
8Here we assume the techniques are numbered according to ranking with respect to the size of 
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Figure 3: Two labor productivity curves based on CRS technologies. Left: neoclassical tech-

nology with Inada conditions for MPK satisfied. Right: a combination of two efficient Leontief

techniques.

The implausibility of the lower Inada conditions is also underlined if we look at their

implication in combination with the more reasonable upper Inada conditions. Indeed, the

four Inada conditions taken together can be shown to imply, under CRS, that output has

no upper bound when either input goes to infinity for fixed amount of the other input.

4 On continuous time analysis

Because dynamic analysis is often easier in continuous time, most growth models are

stated in continuous time. In this section we describe some of the conceptual aspects of

continuous time analysis.

Let us start from a discrete time framework: the run of time is divided into successive

periods of constant length, taken as the time-unit. Let financial wealth at the beginning

of period  be denoted   = 0 1 2 . Then wealth accumulation in discrete time can

be written

+1 −  =  0 given,

where  is (net) saving in period 

4.1 Transition to continuous time

With time flowing continuously, we let () refer to financial wealth at time  Similarly,

(+∆) refers to financial wealth at time +∆ To begin with, let∆ be equal to one time

unit. Then (∆) =  Consider the forward first difference in ∆() ≡ (+∆)−()
It makes sense to consider this change in  in relation to the length of the time interval
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involved, that is, to consider the ratio ∆()∆ As long as ∆ = 1 with  = ∆ we

have ∆()∆ = (+1 − )1 = +1 −  Now, keep the time unit unchanged, but let

the length of the time interval [ +∆) approach zero, i.e., let ∆ → 0. Assuming (·)
is a differentiable function then lim∆→0∆()∆ exists and is denoted the derivative of

(·) at  usually written () or just ̇() That is,

̇() =
()


= lim

∆→0
∆()

∆
= lim

∆→0
(+∆)− ()

∆


By implication, wealth accumulation in continuous time is written

̇() = () (0) = 0 given, (18)

where () is the saving at time . For ∆ “small” we have the approximation ∆()

≈ ̇()∆ = ()∆ In particular, for ∆ = 1 we have ∆() = (+ 1)− () ≈ ()

As time unit let us choose one year. Going back to discrete time, if wealth grows at

the constant rate   0 per year, then after  periods of length one year (with annual

compounding)

 = 0(1 + )  = 0 1 2  . (19)

When compounding is  times a year, corresponding to a period length of 1 year, then

after  such periods:

 = 0(1 +



) (20)

With  still denoting time (measured in years) that has passed since the initial date (here

date 0), we have  =  periods. Substituting into (20) gives

() =  = 0(1 +



) = 0

∙
(1 +

1


)
¸

 where  ≡ 




We keep  and  fixed, but let  (and so )→∞ Then, in the limit there is continuous

compounding and

() = 0
 (21)

where  is the “exponential” defined as  ≡ lim→∞(1 + 1) ' 2.718281828....
The formula (21) is the analogue in continuous time (with continuous compounding)

to the discrete time formula (19) with annual compounding. Thus, a geometric growth

factor is replaced by an exponential growth factor.

We can also view the formulas (19) and (21) as the solutions to a difference equation

and a differential equation, respectively. Thus, (19) is the solution to the simple linear
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difference equation +1 = (1 + ), given the initial value 0 And (21) is the solution

to the simple linear differential equation ̇() = () given the initial condition (0)

= 0With a time-dependent growth rate, () the corresponding differential equation is

̇() = ()() with solution

() = 0
 
0
()  (22)

where the exponent,
R 
0
() , is the definite integral of the function () from 0 to  The

result (22) is called the basic growth formula in continuous time and the factor 
 
0
()

is called the growth factor or the accumulation factor.

Notice that the allowed range for parameters may change when we go from discrete

time to continuous time with continuous compounding. For example, the usual equation

for aggregate capital accumulation in continuous time is

̇() = ()− () (0) = 0 given, (23)

where () is the capital stock, () is the gross investment at time  and  ≥ 0 is the
(physical) capital depreciation rate. Unlike in discrete time, in (23)   1 is conceptually

allowed. Indeed, suppose for simplicity that () = 0 for all  ≥ 0; then (23) gives () =
0

− (exponential decay). This formula is meaningful for any  ≥ 0 Usually, the time
unit used in continuous time macro models is one year (or, in business cycle theory, a

quarter of a year) and then a realistic value of  is of course  1 (say, between 0.05 and

0.10). However, if the time unit applied to the model is large (think of a Diamond-style

overlapping generations model), say 30 years, then   1 may fit better, empirically, if the

model is converted into continuous time with the same time unit. Suppose, for example,

that physical capital has a half-life of 10 years. Then with 30 years as our time unit,

inserting into the formula 12 = −3 gives  = (ln 2) · 3 ' 2

4.2 Stocks and flows

An advantage of continuous time analysis is that it forces the analyst to make a clear

distinction between stocks (say wealth) and flows (say consumption and saving). A stock

variable is a variable measured as just a quantity at a given point in time. The variables

() and() considered above are stock variables. A flow variable is a variable measured

as quantity per time unit at a given point in time. The variables () ̇() and () above

are flow variables.

One cannot add a stock and a flow, because they have different denomination. What
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exactly is meant by this? The elementary measurement units in economics are quantity

units (so and so many machines of a certain kind or so and so many liters of oil or so

and so many units of payment) and time units (months, quarters, years). On the basis

of these we can form composite measurement units. Thus, the capital stock  has the

denomination “quantity of machines”. In contrast, investment  has the denomination

“quantity of machines per time unit” or, shorter, “quantity/time”. If we change our

time unit, say from quarters to years, the value of a flow variable is quadrupled (pre-

supposing annual compounding). A growth rate or interest rate has the denomination

“(quantity/time)/quantity” = “time−1”.

Thus, in continuous time analysis expressions like () + () or () + ̇() are

illegitimate. But one can write ( + ∆) ≈ () + (() − ())∆ or ̇()∆ ≈
(() − ())∆ In the same way, suppose a bath tub contains 50 liters of water and

the tap pours 1
2
liter per second into the tub. Then a sum like 50  + 1

2
(/sec.) does not

make sense. But the amount of water in the tub after one minute is meaningful. This

amount would be 50  + 1
2
· 60 ((/sec.)×sec.) = 90 . In analogy, economic flow variables

in continuous time should be seen as intensities defined for every  in the time interval

considered, say the time interval [0,  ) or perhaps [0,∞). For example, when we say that
() is “investment” at time , this is really a short-hand for “investment intensity” at time

. The actual investment in a time interval [0 0 +∆)  i.e., the invested amount during

this time interval, is the integral,
R 0+∆

0
() ≈ ()∆ Similarly, () that is, the flow

of individual saving, should be interpreted as the saving intensity at time  The actual

saving in a time interval [0 0 +∆)  i.e., the saved (or accumulated) amount during this

time interval, is the integral,
R 0+∆

0
() If ∆ is “small”, this integral is approximately

equal to the product (0) ·∆, cf. the hatched area in Fig. 3.

The notation commonly used in discrete time analysis blurs the distinction between

stocks and flows. Expressions like +1 =  +  without further comment, are usual.

Seemingly, here a stock, wealth, and a flow, saving, are added. But, it is really wealth

at the beginning of period  and the saved amount during period  that are added: +1

=  +  ·∆. The tacit condition is that the period length, ∆ is the time unit, so that

∆ = 1. But suppose that, for example in a business cycle model, the period length is

one quarter, but the time unit is one year. Then saving in quarter  is  = (+1 − ) · 4
per year.

In empirical economics data typically come in discrete time form and data for flow

variables typically refer to periods of constant length One could argue that this discrete
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Figure 4: With ∆ “small” the integral of () from 0 to 0 +∆ is ≈ the hatched area.

form of the data speaks for discrete time rather than continuous time modelling. And the

fact that economic actors often think and plan in period terms, may be a good reason

for putting at least microeconomic analysis in period terms. Yet, it can hardly be said

that the mass of economic actors think and plan with one and the same period. In

macroeconomics we consider the sum of the actions and then a formulation in continuous

time may be preferable. This also allows variation within the usually artificial periods

in which the data are chopped up.9 For example, stock markets (markets for bonds and

shares) are more naturally modelled in continuous time because such markets equilibrate

almost instantaneously; they respond immediately to new information.

In his discussion of this modelling issue, Allen (1967) concluded that from the point of

view of the economic contents, the choice between discrete time or continuous time analysis

may be a matter of taste. But from the point of view of mathematical convenience,

the continuous time formulation, which has worked so well in the natural sciences, is

preferable.10
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