
Economic Growth Lecture Note 5.

08.02.2010. Christian Groth

Speed of adjustment and other issues

In this note we discuss an aspect of the transitional dynamics in the Solow model,

namely the speed of adjustment toward the steady state. In § 1.2.13, B & S analyze

how fast (or rather how slow) are the transitional dynamics in the Solow model. To put

it another way: according to the Solow model, how fast does the economy approach its

steady state? The answer turns out to be: not very fast - to say the least. This is a rather

general conclusion: growth adjustment processes are quite time consuming.

To obtain a conceptual framework for studying such a question, we search for a formula

for the speed of adjustment of k̃− k̃∗ and ỹ− ỹ∗ in the Solow model. We shall use a more

general approach than B & S (pp. 56-59), who concentrate on the Cobb-Douglas case.

We use the term speed of adjustment instead of “speed of convergence” (the term used in

B & S, pp. 56-59, 111-118 and 167) in order not to confuse the topic with the question of

across-country convergence (which is what “σ convergence” is about). Our issue here is

“within-country convergence”, that is, how fast do variables such as k̃, k, and y approach

their steady state paths in a closed economy.

In the last section of this lecture note we touch upon the question: do poor countries

necessarily tend to approach their steady state from below?1

1 The Solow model

Let the aggregate production function be

Y = F (K,TL), (1)

where F is a neoclassical production function with CRS, Y is output, K is capital input

and TL is effective labor input in that T and L are the technology level and labor force,

respectively, T = T (0)ext, T (0) > 0 given, L = L(0)ent, L(0) > 0 given. It is natural to

1Sections marked with * are only cursory reading.
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assume the parameter x non-negative. We will allow the parameter n to have any sign.

In view of CRS, we can write output per unit of effective labor as

ỹ ≡ y

T
≡ Y

TL
= F (

K

TL
, 1) ≡ f(k̃), f 0 > 0, f 00 < 0,

where k̃ ≡ k/T ≡ K/(TL) is the (effective) capital intensity. Considering the Solow

model, there is a given constant saving rate s, 0 < s < 1. Thus, in a closed economy,

C = (1− s)Y so that

K̇ = Y − C − δK = sY − δK, K(0) > 0 given,

where δ is a constant capital depreciation rate, δ ≥ 0. Log-differentiating k̃ ≡ K/(TL)

wrt. t, we get the fundamental differential equation for the Solow model:

·
k̃ = sf(k̃)− (δ + x+ n)k̃ ≡ sf(k̃)−mk̃. (2)

Assume

lim
k̃→0

f 0(k̃) >
m

s
> lim

k̃→∞
f 0(k̃). (A1)

Then there exists a unique non-trivial steady state, k̃∗ > 0, that is, a unique positive

solution to the equation

sf(k̃∗) = mk̃∗; (3)

note that (A1) ensures m > 0. Furthermore,

·
k̃ T 0 for k̃ S k̃∗. (4)

Thus, the steady state, k̃∗, is globally asymptotically stable. Fig. 1 illustrate the dynamics

as seen from (2). Fig. 2 illustrates the dynamics as seen from

·
k̃ = s

∙
f(k̃)− δ + x+ n

s
k̃

¸
.

In Fig. 3 in Section 4 yet another illustration is exhibited.

An important variable in the analysis below is the output elasticity wrt. capital:

K

Y

∂Y

∂K
=

k̃

f(k̃)
f 0(k̃) ≡ α(k̃). (5)
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2 Speed of adjustment close to the steady state

2.1 Adjustment speed for k̃

Let ϕ(k̃) ≡ sf(k̃)−mk̃. A first-order Taylor approximation of ϕ(k̃) gives

ϕ(k̃) ≈ ϕ(k̃∗) + ϕ0(k̃∗)(k̃ − k̃∗) = 0 + (sf 0(k̃∗)−m)(k̃ − k̃∗),

so that in a neighborhood of the steady state

·
k̃ ≈ (sf 0(k̃∗)−m)(k̃ − k̃∗)

= (
sf 0(k̃∗)

m
− 1)m(k̃ − k̃∗)

= −(1− k̃∗f
0
(k̃∗)

f(k̃∗)
)m(k̃ − k̃∗) (from (3))

= −(1− α(k̃∗))m(k̃ − k̃∗) (from (5)).

Dividing through by (k̃ − k̃∗), we get, since dk̃∗/dt = 0,

d(k̃ − k̃∗)/dt

k̃ − k̃∗
≈ −(1− α(k̃∗))m ≡ −β(k̃∗) < 0. (6)

Thus, with explicit dating of the time-dependent variable k̃, the (proportionate) rate of

decline of k̃(t)− k̃∗ is

−d(k̃(t)− k̃∗)/dt

k̃(t)− k̃∗
≈ (1− α(k̃∗))(δ + x+ n) ≡ β(k̃∗) > 0, (7)

where we have insertedm ≡ δ+x+n. This result tells us how fast the economy approaches

its steady state. For example, if β(k̃∗) = 0.02 per year (empirically realistic, according to

B & S, Ch. 11), then 2 percent of the gap between k̃(t) and k̃∗ vanishes per year. We call

the (proportionate) rate of decline of the distance to steady state the speed of adjustment.

Hence, β(k̃∗) measures the approximate speed of adjustment of k̃(t) in a neighborhood of

the steady state.

Multiplying through by −(k̃(t) − k̃∗), the equation (7) takes the standard form of a

homogeneous linear differential equation in the gap, k̃(t)− k̃∗. The solution is

k̃(t)− k̃∗ ≈ (k̃(0)− k̃∗)e−β(k̃
∗)t, (8)

which shows how the gap moves and becomes smaller and smaller over time.
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Since approximative models are often based on log-linearization, we might ask what

the speed of adjustment of log k̃(t) − log k̃∗ is. The answer is: the same! Indeed, by a
first-order Taylor approximation of log k̃(t) around k̃∗ we have

log k̃(t) ≈ log k̃∗ + 1

k̃∗
(k̃(t)− k̃∗), for all t ≥ 0. (9)

Dividing by k̃∗ on both sides of (8) gives

k̃(t)− k̃∗

k̃∗
≈ k̃(0)− k̃∗

k̃∗
e−β(k̃

∗)t ⇒ (by (9))

log k̃(t)− log k̃∗ ≈ (log k̃(0)− log k̃∗)e−β(k̃∗)t ⇒

−d(log k̃(t)− log k̃
∗)/dt

log k̃(t)− log k̃∗
≈ β(k̃∗). (10)

We see that (at least in a neighborhood of the steady state) the speed of adjustment of

the logarithmic distance to the steady state is the same as the speed of adjustment of the

distance of k̃ itself to its steady state.

Comparing with B & S pp. 56-57

By multiplying through by −(log k̃(t)− log k̃∗) in (10) we get

dk̃(t)/dt

k̃(t)
=

·
k̃(t)

k̃(t)
≈ −β(k̃∗)(log k̃(t)− log k̃∗) = −β(k̃∗) log k̃(t)

k̃∗
.

This shows that the B & S result (1.46) holds for a general neoclassical production func-

tion.

B & S concentrate on the Cobb-Douglas case:

ỹ = Ak̃α, A > 0, 0 < α < 1. (11)

Then the elasticity of output wrt. capital, α(k̃), equals the constant α for all k̃ > 0. In

particular α(k̃∗) = α. So, the adjustment speed is

(1− α)(δ + x+ n) ≡ β∗, (12)

which is independent of k̃∗. This is the same as equation (1.45) in B & S. It is noteworthy

that in the Cobb-Douglas case, neither the saving rate, nor the overall level of efficiency of

the economy, A, affect the asymptotic speed of adjustment. This is due to two offsetting

forces which exactly cancel each other in this case, as explained by B & S, p. 58.
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With one year as our time unit, standard parameter values are: x = 0.02, n = 0.01,

δ = 0.05, and α = 1/3. Then the adjustment speed for k̃ is β∗ = (1−α)(δ+x+n) = 0.053

per year.

In the empirical Chapter 11, B & S argue that a lower value of β∗, say 0.02 per year,

fits the data better.2 This requires α = 0.75. Such a high value of α (≈ the share of

capital income in total income) may seem difficult to defend. But if we reinterpret K in

the Solow model to include human capital (skills acquired through education and learning

by doing), a value of α at that level may not be far out.

2.2 Adjustment speed for ỹ

The variable which we are interested in is usually not so much k̃ in itself, but rather labor

productivity, y ≡ Y/L ≡ ỹT. We have

y(t)− y∗(t)

y∗(t)
≡ ỹ(t)− ỹ∗

ỹ∗
,

where y∗(t) ≡ ỹ∗T (t) = f(k̃∗)T (0)ext is the steady-state path. Thus, the interesting

question becomes what the adjustment speed of ỹ is.

Differentiating ỹ = f(k̃) wrt. t gives

·
ỹ = f 0(k̃)

·
k̃ = f 0(k̃)

h
s(ỹ − ỹ∗)−m(k̃ − k̃∗)

i
,

from (2) and (3). In that ỹ − ỹ∗ = f(k̃)− f(k̃∗), this gives

d(ỹ − ỹ∗)/dt

ỹ − ỹ∗
= f 0(k̃)

Ã
s−m

k̃ − k̃∗

f(k̃)− f(k̃∗)

!
= f 0(k̃)

Ã
s

m
− k̃ − k̃∗

f(k̃)− f(k̃∗)

!
m

= f 0(k̃)

Ã
k̃∗

f(k̃∗)
− k̃ − k̃∗

f(k̃)− f(k̃∗)

!
m (from (3))

=
f 0(k̃)

f(k̃)−f(k̃∗)
k̃−k̃∗

Ã
k̃∗

f(k̃∗)

f(k̃)− f(k̃∗)

k̃ − k̃∗
− 1
!
m.

2There is not general agreement about this. Some authors, for example Islam (1995), using a panel
data approach, find a speed of adjustment which is more than the double of this. McQuinne and Whelan
(2007) get similar results. (Yet, this still signifies a quite slow adjustment.)
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So, the speed of adjustment for y is

−d(ỹ − ỹ∗)/dt

ỹ − ỹ∗
=

f 0(k̃)
f(k̃)−f(k̃∗)

k̃−k̃∗

Ã
1− k̃∗

f(k̃∗)

f(k̃)− f(k̃∗)

k̃ − k̃∗

!
m (13)

→
Ã
1− k̃∗

f(k̃∗)
f 0(k̃∗)

!
m for k̃ → k̃∗,

since

lim
k̃→k̃∗

f 0(k̃) = f 0(k̃∗) = lim
k̃→k̃∗

f(k̃)− f(k̃∗)

k̃ − k̃∗
.

Comparing with (7), we see that, at least in a small neighborhood of the steady state,

the speed of adjustment for ỹ, in view of the definition in (5), is the same as the speed of

adjustment for k̃, namely β(k̃∗).

We might also be interested in the adjustment speed of the logarithmic distance of ỹ to

the steady state. Using the definition of β(k̃∗) in (6), by (13), ỹ(t)−ỹ∗ ≈ (ỹ(0)−ỹ∗)e−β(k̃∗)t,
so that

ỹ(t)− ỹ∗

ỹ∗
≈ ỹ(0)− ỹ∗

ỹ∗
e−β(k̃

∗)t,

or

log ỹ(t)− log ỹ∗ ≈ (log ỹ(0)− log ỹ∗)e−β(k̃∗)t.

This shows that also the logarithmic distance of ỹ to the steady state declines (in a small

neighborhood of the steady state) at the rate β(k̃∗).

3 Adjustment in the large*

But the formulas for the adjustment speeds up to now may be valid only in a small

neighborhood of the steady state. What if the economy initially is far away from its

steady state? In this context, it is convenient to consider the adjustment of the growth

rate of k̃.

3.1 Adjustment speed for the growth rate of k̃

Wemay use the fact that the growth rate gk̃ ≡ (dk̃/dt)/k̃ during the transitional dynamics
changes gradually from some non-zero value to zero (asymptotically) in the steady state.

The speed of adjustment of this growth rate is, in analogy with (7),

σ(k̃) ≡ −d(gk̃ − 0)/dt
gk̃ − 0

= − ġk̃
gk̃
, (14)
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that is, σ(k̃) is the proportionate rate of decline of gk during the adjustment process.3

From (2) we have

gk̃ = s
f(k̃)

k̃
−m, (15)

so that

ġk̃ = s
k̃f 0(k̃)

·
k̃ − f(k̃)

·
k̃

k̃2
= s

Ã
k̃

f(k̃)
f 0(k̃)− 1

!
f(k̃)

k̃
gk̃,

or
ġk̃
gk̃
= (α(k̃)− 1)sf(k̃)

k̃
, (16)

using the definition in (5). Thus, by (14), the speed of adjustment of gk is

σ(k̃) = (1− α(k̃))s
f(k̃)

k̃
. (17)

This result is exact whatever the distance to the steady state and holds for any neoclassical

f(·).

Comparing (17) with (7), we have, in view of (3) and m ≡ δ + x + n, that close to

the steady state, the adjustment speed of the growth rate of k̃, σ(k̃), is approximately the

same as the adjustment speed of k̃ itself, β(k̃∗).4

The Cobb-Douglas case

In the Cobb-Douglas case (11) we have α(k̃) = α and β(k̃∗) = β∗, from (12). For this

case, comparing (17) with (7), we get

σ(k̃) R β∗ for s
f(k̃)

k̃
R δ + x+ n, respectively,

that is, for k̃ Q k̃∗, respectively,

in view of (4). Hence, if the Cobb-Douglas economy is below its steady state (k̃ < k̃∗),

then the adjustment speed σ(k̃) exceeds β∗ and is declining over time. On the other

hand, if the economy is above its steady state (k̃ > k̃∗), then the adjustment speed

σ(k̃) is lower than β∗ and is rising over time.5 This difference is due to the concavity of

the production function. The result goes through approximately, even with the general

production function, f(k̃), if α(k̃) is not too elastic with respect to k̃.

3Note that −σ(k̃) is the growth rate of the growth rate of k̃.
4In the Cobb-Douglas case, (17) gives the formula (1.44) in B & S. For further comparison with B &

S, see Appendix.
5Unfortunately, this last possibility is overlooked by B & S in their statement on p. 57 (in the middle,

after (1.45)).
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The capital-output ratio in the Cobb-Douglas case

Interestingly, the adjustment speed of the capital-output ratio, v ≡ K/Y = k̃1−α, can

in the Cobb-Douglas case be shown to be independent of how far away from the steady

state the economy is. Indeed, using the closed-form solution for v on p. 44 in B & S, we

see that the adjustment speed of v is (1 − α)(δ + x + n) (which is the same as our β∗)

independently of the distance of v to its steady-state value, v∗ = sA/(δ + x+ n).6

3.2 Adjustment speed for the growth rate of ỹ

Consider the Cobb-Douglas case. We get, by logarithmic differentiation wrt. t in (11),

gỹ = αgk̃.

It follows that
ġỹ
gỹ
=

ġk̃
gk̃,

= (α− 1)sAk̃α−1 = −σ(k̃),

from (16) and (17). Hence, the adjustment speed of the growth rate of ỹ is the same as

that of the growth rate of k̃. This is an exact result in the Cobb-Douglas case, but only

approximately true in the general case.

4 Intuitive interpretation*

As indicated by the formula (17), the adjustment speed, σ(k̃), for gk̃ depends negatively

on α(k̃) and positively on the saving-capital ratio, sf(k̃)/k̃. The formula is useful because

these determinants are more or less directly observable. We have data for s and can

construct data for the output-capital ratio, f(k̃)/k̃ = Y/K (cf. B & S, p. 436 ff.)

(and close to steady state, we simply have sf(k̃)/k̃ ≈ δ + x + n). Further, α(k̃) can be

approximated by the capital income share.

But what is the intuition behind the result that the adjustment speed, σ(k̃), depends

negatively on α(k̃) and positively on the saving-capital ratio, sf(k̃)/k̃. Or, to put it

differently, how comes that high 1 − α(k̃) and high sf(k̃)/k̃ result in high adjustment

speed? To throw light on this, note that:

(i) The product of these two factors (which equals σ(k̃)) measures a kind of sensitivity

of the saving-capital ratio, S/K = sf(k̃)/k̃, wrt. k̃.

6Here we have extended the result in B & S, p. 44, to the case x > 0.
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(ii) The saving-capital ratio is of key importance for how fast k̃ changes.

Observation (ii) is an immediate implication of (15). And (i) can be seen by calculating

the fall in S/K triggered by a rise in k̃. We get

−d(S/K)
dk̃

= −d(S/K)
dk̃

= −d(sf(k̃)/k̃)
dk̃

= −sk̃f
0(k̃)− f(k̃)

k̃2

= (1− k̃f 0(k̃)

f(k̃)
)
sf(k̃)

k̃2
= (1− α(k̃))

sf(k̃)

k̃2
.

Thus, defining the sensitivity of the saving-capital ratio wrt. k̃ as −d(S/K)/(dk̃/k̃), this
sensitivity is

(1− α(k̃))
sf(k̃)

k̃
= σ(k̃),

by (7). In this way the speed of change in k̃ is governed by sf(k̃)/k̃, and the offsetting

feedback on sf(k̃)/k̃ is stronger, the higher is σ(k̃).

The phase diagram in Fig. 3 illustrates some of this. The arrows come from (15) with

m ≡ δ + x+ n. That a higher α(k̃) results in weaker feedback reflects that 1− α(k̃) is in

fact identical to the absolute elasticity of the output-capital ratio wrt. k̃. Indeed,

− k̃

f(k̃)/k̃

d(f(k̃)/k̃)

dk̃
= 1− k̃f 0(k̃)

f(k̃)
≡ 1− α(k̃).
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When k̃ increases, the average product of capital (the output-capital ratio) decreases, but

this degree of diminishing returns is smaller, the higher is α(k̃).

It may clarify to go to the extreme. In the Cobb-Douglas case, we can consider the

limiting case where α = 1 and x = 0, that is, the so-called AK model, y = Ak. Then

k̇/k = sA− (δ + x+ n) > 0 if s > (δ + x+ n)/A. There is never “adjustment”, because

the capital intensity never settles down, cf. Fig. 4.

5 Adjustment time

Let τω be the time that it takes for the fraction ω ∈ (0, 1) of the gap between k̃ and k̃∗

to be eliminated, i.e., τω satisfies the equation

k̃(τω)− k̃∗

k̃(0)− k̃∗
= 1− ω.

Now, by (8), we have

k̃(τω)− k̃∗ ≈ (k̃(0)− k̃∗)e−β(k̃
∗)τω , or

1− ω ≈ e−β(k̃
∗)τω .
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Taking logs on both sides and solving for τω gives

τω ≈ −
log(1− ω)

β(k̃∗)
. (18)

This is the adjustment time required to eliminate the fraction ω of the distance to steady

state, when the adjustment speed is β(k̃∗).

Often we consider the half-life, that is, the time that it takes for half the initial gap

to be eliminated. To find the half-life, we put ω = 1
2
in (18). Again we use one year as

our time unit. With the standard parameter values: x = 0.02, n = 0.01, δ = 0.05, and

α = 1/3 (we consider the Cobb-Douglas case), we have β∗ = (1− α)(δ + x+ n) = 0.053

per year and thus

τ 1
2
≈ −

log 1
2

0.053
≈ 0.69

0.053
= 13, 1 years.

As mentioned earlier, in Chapter 11 B & S argue that a lower value of β∗, say 0.02 per

year, fits the data better. This requires α = 0.75. Such a high value of α may be allowed

if we reinterpret K in the Solow model as including human capital. With β∗ = 0.02, the

half-life is

τ 1
2
≈ −

log 1
2

0.02
≈ 0.69
0.02

= 34.7 years.

The time needed to eliminate three quarters of the distance to steady state, τ 3/4, is about

70 years (= 2 · 35 years, since 1− 3/4 = 1
2
· 1
2
).

6 Do poor countries tend to approach their steady
state from below?

In contrast to the impression you get from B & S, we cannot be sure that an economy

(which can be approximately described by, for example, the Solow model or the Ramsey

model) will tend to approach its steady state from below. This is because the size of k̃t
relative to k̃∗ for a poor country is ambiguous. Indeed,

kt ≡
Kt

TtLt
,

where Kt/Lt is typically low for a poor country, but the technology level, Tt, is also

typically relatively low for a poor country. Hence, whether k̃t < k̃∗ or k̃t > k̃∗ is not

obvious at first sight.7

7To put it differently, several places B & S implicitly presuppose that K in poor countries grows at a
rate higher than x+ n. But the opposite inequality is a priori equally plausible.
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There is empirical evidence indicating that, “on average, countries with a lower income

per adult are above their steady-state positions, while countries with a higher income are

below their steady-state positions” (Cho and Graham, 1996).

7 Appendix

Our result (17) may be a surprise, because B & S define in their (1.42) their β (our σ(k̃))

in a seemingly different (and, in our opinion, less intuitive) way compared to our definition

in (14). But our (14) implies (1.42) in B & S. Indeed, elaborating on (14) we can write

σ(k̃) = − dγk̃/dt

d log k̃/dt
= − dγk̃

d log k̃
(by eliminating dt),

which is the same as (1.42) in B & S.
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