
Chapter 4

A growing economy

In the previous chapter we ignored technological progress. An incontestable
fact of real life in industrialized countries is, however, the presence of a per-
sistent rise in GDP per capita − on average between 1.5 and 2.5 percent per
year since 1870 in many developed economies. In regard to U.K., U.S., and
Japan, see Fig. 4.1; and in regard to Denmark, see Fig. 4.2. In spite of the
somewhat dubious quality of the data from before the Second World War,
this observation should be taken into account in a model which, like the Di-
amond model, aims at dealing with long-run issues. For example, in relation
to the question of dynamic ineffi ciency, cf. Chapter 3, the cut-off value of the
steady-state interest rate is the steady-state GDP growth rate of the econ-
omy and this growth rate increases one-to-one with the rate of technological
progress. We shall therefore now introduce technological progress.

On the basis of a summary of “stylized facts” about growth, Section
4.1 motivates the assumption that technological progress at the aggregate
level takes the Harrod-neutral form. In Section 4.2 we extend the Diamond
OLG model by incorporating this form of technological progress into the
model. Section 4.3 extends the golden rule concept to allow for the existence
of technological progress. In Section 4.4 what is known as the neoclassical
theory of the functional income distribution is addressed. In this connection
an expedient analytical tool, the elasticity of factor substitution, is presented.
Section 4.5 goes into detail with the special case of a constant elasticity
of factor substitution (the CES production function). Finally, Section 4.6
concludes.
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124 CHAPTER 4. A GROWING ECONOMYGDP per capita in United States, United Kingdom and Japan (1870-2010) 

 

 

Sources: Bolt, J. and J. L. van Zanden (2013): The First Update of the Maddison Project; Re-Estimating 

Growth Before 1820. Maddison Project Working Paper 4. 

  

Figure 4.1: GDP per capita in U.S., U.K., and Japan 1870-2010. Source: Bolt and
van Zanden (2013).

4.1 Harrod-neutrality and Kaldor’s stylized
facts

Suppose the technology changes over time in such a way that we can write
the aggregate production function as

Yt = F (Kt, TtLt), (4.1)

where the level of technology is represented by the factor Tt which is growing
over time, and where Yt, Kt, and Lt stand for output, capital input, and labor
input, respectively. When technological change takes this purely “labor-
augmenting”form, it is known as Harrod-neutral technological progress.

Kaldor’s stylized facts

The reason that macroeconomists often assume that technological change at
the aggregate level takes the Harrod-neutral form as in (4.1) and not for
example the form Yt = F (XtKt, TtLt) (where both X and T are changing
over time), is the following. You want the long-run properties of the model
to comply with Kaldor’s list of “stylized facts”(Kaldor 1961) concerning the
long-run evolution of industrialized economies. Abstracting from short-run
fluctuations, Kaldor’s “stylized facts”are:
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4.1. Harrod-neutrality and Kaldor’s stylized facts 125

GDP and GDP per capita in Denmark (1870-2010) 

 

Sources: Bolt, J. and J. L. van Zanden (2013): The First Update of the Maddison Project; Re-Estimating 

Growth Before 1820. Maddison Project Working Paper 4, Maddison (2010): Statistics on World Population, 

GDP and Per Capita GDP, 1-2008 AD, and The Conference Board Total Economy Database (2013). 

Figure 4.2: GDP and GDP per capita. Denmark 1870-2006. Sources: Bolt and van
Zanden (2013); Maddison (2010); The Conference Board Total Economy Database
(2013).

1. the growth rates in K/L and Y/L are roughly constant;

2. the output-capital ratio, Y/K, the income share of labor, wL/Y, and
the average rate of return, (Y − wL− δK)/K,1 are roughly constant;

3. the growth rate of Y/L can vary substantially across countries for quite
long time.

Ignoring the conceptual difference between the path of Y/L and that of
Y per capita (a difference not so important in this context), the figures 4.1
and 4.2 illustrate Kaldor’s “fact 1”about the long-run property of the Y/L
path for the more developed countries. Japan had an extraordinarily high
growth rate for a couple of decades after World War II, usually explained by
fast technology transfer from the most developed countries (the catching-up
process which can only last until the technology gap is eliminated). Fig. 4.3
gives rough support for a part of Kaldor’s “fact 2”, namely that about the
labor income share. The third fact is a fact well documented empirically.2

1In this formula w is the real wage and δ is the capital depreciation rate. Land (and/or
similar natural resources) is ignored. For countries where land is a quantitatively important
production factor, the denominator should be replaced by K + pJJ , where pJ is the real
price of land, J.

2For a summary, see Pritchett (1997).
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Figure 4.3: Labor’s share of GDP in USA (1950-2011) and Denmark (1970-2011).
Source: Feenstra, Inklaar and Timmer (2013), www.ggdc.net/pwt.

It is fair to add, however, that the claimed regularities 1 and 2 do not
fit all developed countries equally well. Although Solow’s growth model
(Solow, 1956) can be seen as the first successful attempt at building a model
consistent with Kaldor’s “stylized facts”, Solow himself once remarked about
them: “There is no doubt that they are stylized, though it is possible to
question whether they are facts”(Solow, 1970). Recently, several empiricists
have questioned the methods standard national income accounting apply to
separate the income of entrepreneurs, sole proprietors, and unincorporated
businesses into labor and capital income, claiming these methods obscure a
tendency in recent decades of the labor income share to fall (Gollin, 2002;
Karabarbounis and Neiman, 2013).

Notwithstanding these ambiguities, it is definitely a fact that many long-
run models are constructed so a to comply with Kaldor’s stylized facts. Let
us briefly take a look at the Solow model (in discrete time) and check its con-
sistency with Kaldor’s “stylized facts”. The point of departure of the Solow
model, and many other growth models, is the aggregate dynamic resource
constraint for a closed economy:

Kt+1 −Kt = It − δKt = St − δKt ≡ Yt −Ct − δKt, K0 > 0 given, (4.2)

where It is gross investment, which in a closed economy equals gross saving,
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4.1. Harrod-neutrality and Kaldor’s stylized facts 127

St ≡ Yt − Ct; δ is a constant capital depreciation rate, 0 ≤ δ ≤ 1.3

The Solow model and Kaldor’s stylized facts

As is well-known, the Solow model postulates a constant aggregate saving-
income ratio, ŝ, so that St = ŝYt, 0 < ŝ < 1. Further, the model assumes
technical progress is Harrod-neutral like in the aggregate production function
(4.1). To this Solow adds assumptions of CRS and exogenous geometric
growth in T and L, i.e., Tt = T0(1 + g)t, g ≥ 0, and Lt = L0(1 +n)t, n > −1.
In view of CRS, we have Y = F (K,AL) = TLF (k̃, 1) ≡ TLf(k̃), where k̃
≡ K/(TL) is the effective capital-labor ratio and f ′ > 0 and f ′′ < 0.
Substituting St = ŝYt into Kt+1 − Kt = St − δKt, dividing through by

Tt(1 + g)Lt(1 + n) and rearranging gives the “law of motion”of the Solow
model:

k̃t+1 =
ŝf(k̃t) + (1− δ)k̃t

(1 + g)(1 + n)
≡ ϕ(k̃t), (4.3)

where, for N ≡ (1 + g)(1 + n), ϕ′(k̃) = (ŝf ′(k̃) + 1 − δ)/N > 0 and ϕ′′(k̃)
= ŝf ′′(k̃)/N < 0. If (1+g)(1+n) > 1−δ and f satisfies the Inada conditions
limk̃→0 f

′(k̃) = ∞ and limk̃→∞ f
′(k̃) = 0, there is a unique and globally

asymptotically stable steady state k̃∗ > 0. The transition diagram looks
entirely as in Fig. 3.4 of the previous chapter (ignoring the tildes).4 The
convergence of k̃ to k̃∗ implies that in the long run we have K/L = k̃∗T and
Y/L = f(k̃∗)T. Both are consequently growing at the same constant rate as
T, the rate g. And constancy of k̃ implies constancy of Y/K = f(k̃)/k̃ and
of the labor income share, wL/Y = (f(k̃) − k̃f ′(k̃))/f(k̃), hence also of the
rate of return, (1− wL/Y )Y/K − δ.
It follows that the Solow model complies with the stylized facts 1 and

2 above. Many different models do that. What these models must have in
common is a capability of generating balanced growth.

Balanced growth

With Kt, Yt, and Ct denoting aggregate capital, output, and consumption as
above, we define a balanced growth path the following way:

3In both (4.1) and (4.2) it is implicitly assumed, as is usual in simple macroeconomic
models, that technological progress is disembodied rather than embodied, a distinction
described in Section 2.2 of Chapter 2.

4What makes the Solow model so easily tractable compared to the Diamond OLG
model is the constant saving-income ratio which makes the transition function essentially
dependent only on the production function in intensive form and this is a strictly concave
function, reflecting the dimishing marginal productivity of capital. Nevertheless, a special
case of the Diamond model gives the Solow model, see Exercise IV.??.
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128 CHAPTER 4. A GROWING ECONOMY

DEFINITION 1 A balanced growth path is a path {(Kt, Yt, Ct)}∞t=0 along
which the variables Kt, Yt, and Ct are positive and grow at constant rates
(not necessarily positive).

At least for a closed economy there is a general equivalence relationship
between balanced growth and constancy of certain key ratios like Y/K and
C/Y . This relationship is an implication of accounting based on the above
aggregate dynamic resource constraint (4.2).
We will denote the growth rate of a positive variable, x, between t − 1

and t, gx(t) i.e., gx(t) ≡ (xt − xt−1)/xt−1 ≡ ∆xt/xt−1. When there is no risk
of confusion, we suppress the explicit dating and write gx ≡ ∆x/x.

PROPOSITION 1 (the balanced growth equivalence theorem). Let {(Kt, Yt, Ct)}∞t=0

be a path along which Kt, Yt, Ct, and St (≡ Yt − Ct) are positive for all
t = 0, 1, 2, . . . . Then, given the dynamic resource constraint (4.2), the follow-
ing holds:
(i) if there is balanced growth, then gY = gK = gC and so the ratios Y/K
and C/Y are constant;
(ii) if Y/K and C/Y are constant, then Y,K, and C grow at the same
constant rate, i.e., not only is there balanced growth but the growth rates of
Y, K, and C are the same.

Proof Consider a path {(Kt, Yt, Ct)}∞t=0 along whichK, Y, C, and St ≡ Y −Ct
are positive for all t = 0, 1, 2, . . . .
(i) Suppose the path is a balanced growth path. Then, by definition, gY ,

gK , and gC are constant. Hence, by (4.2), S/K = gK + δ must be constant,
implying5

gS = gK . (*)

By (4.2), Y ≡ C + S, and so

gY =
∆Y

Y
=

∆C

Y
+

∆S

Y
=
C

Y
gC +

S

Y
gS =

C

Y
gC +

S

Y
gK (by (*))

=
C

Y
gC +

Y − C
Y

gK =
C

Y
(gC − gK) + gK . (**)

Let us provisionally assume that gC 6= gK . Then (**) gives

C

Y
=
gY − gK
gC − gK

, (***)

5The ratio between two positive variables is constant if and only if the variables have
the same growth rate (not necessarily constant or positive). For this and similar simple
growth-arithmetic rules, see Appendix A.
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4.1. Harrod-neutrality and Kaldor’s stylized facts 129

a constant since gY , gK , and gC are constant. Constancy of C/Y requires
gC = gY , hence, by (***), C/Y = 1, i.e., C = Y. In view of Y ≡ C + S,
however, this implication contradicts the given condition that S > 0. Hence,
our provisional assumption and its implication (***) are falsified. Instead
we have gC = gK . By (**), this implies gY = gK = gC , but now without
the condition C/Y = 1 being implied. It follows that Y/K and C/Y are
constant.
(ii) Suppose Y/K and C/Y are positive constants. Applying that the

ratio between two variables is constant if and only if the variables have the
same (not necessarily constant or positive) growth rate, we can conclude
that gY = gK = gC . By constancy of C/Y follows that S/Y ≡ 1 − C/Y is
constant. So gS = gY = gK , which in turn implies that S/K is constant. By
(4.2),

S

K
=

∆K + δK

K
= gK + δ,

so that also gK is constant. This, together with constancy of Y/K and C/Y,
implies that also gY and gC are constant. �
Remark. It is part (i) of the proposition which requires the assumption S > 0
for all t ≥ 0. If S = 0, we would have gK = −δ and C ≡ Y − S = Y, hence
gC = gY for all t ≥ 0. Then there would be balanced growth if the common
value of gC and gY had a constant growth rate. This growth rate, however,
could easily differ from that of K. Suppose Y = AKαL1−α, 0 < α < 1,
gA = γ and gL = n, where γ and n are constants. We would then have 1+gC
= 1 + gY = (1 + γ)(1 − δ)α(1 + n)1−α, which could easily be larger than 1
and thereby different from 1 + gK = 1− δ ≤ 1 so that (i) no longer holds.
It is part (ii) of the proposition which requires the assumption of a closed

economy. In an open economy we do not necessarily have I = S, hence
constancy of S/K no longer implies constancy of gK = I/K − δ. �
For many long-run closed-economy models, including the Diamond OLG

model, it holds that if and only if the dynamic system implied by the model is
in a steady state, will the economy feature balanced growth, cf. Proposition
4 below. There exist cases, however, where this equivalence between steady
state and balanced growth does not hold (some open economy models and
some models with embodied technological change). Hence, we shall maintain
a distinction between the two concepts.
Note that Proposition 1 pertains to any model for which (4.2) is valid. No

assumption about market form and economic agents’behavior are involved.
And except for the assumed constancy of the capital depreciation rate δ, no
assumption about the technology is involved, not even that constant returns
to scale is present.
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130 CHAPTER 4. A GROWING ECONOMY

Proposition 1 suggests that if one accepts Kaldor’s stylized facts as a
rough description of more than a century’s growth experience and therefore
wants the model to be consistent with them, one should construct the model
so that it can generate balanced growth.

Balanced growth requires Harrod-neutrality

Our next proposition states that for a model to be capable of generating
balanced growth, technological progress must take the Harrod-neutral form
(i.e., be labor-augmenting). Also this proposition holds in a fairly general
setting, but not as general as that of Proposition 1. Constant returns to
scale and a constant growth rate in the labor force, two aspects about which
Proposition 1 is silent, will now have a role to play.6

Consider an aggregate production function

Yt = F̃ (Kt, ALt, t), A > 0,
∂F̃

∂t
> 0, (4.4)

where F̃ is homogeneous of degree one w.r.t. the first two arguments (CRS)
and A is a constant that depends on measurement units. The third argument,
t, represents technological progress: as time proceeds, unchanged inputs of
capital and labor result in more and more output. Let the labor force grow
at a constant rate n,

Lt = L0(1 + n)t, n > −1, (4.5)

where L0 > 0. The Japanese economist Hirofumi Uzawa (1928-) is famous for
several contributions, not least his balanced growth theorem (Uzawa 1961),
which we here state in a modernized form.

PROPOSITION 2 (Uzawa’s balanced growth theorem). Let {(Kt, Yt, Ct)}∞t=0

be a path along which Yt, Kt, Ct, and St ≡ Yt − Ct are positive for all
t = 0, 1, 2,. . . , and satisfy the dynamic resource constraint (4.2), given the
production function (4.4) and the labor force (4.5). Assume (1 + g)(1 + n)
> 1− δ. Then:
(i) a necessary condition for this path to be a balanced growth path is that
along the path it holds that

Yt = F̃ (Kt, TtLt, 0), (4.6)

where Tt = A(1 + g)t with 1 + g ≡ (1 + gY )/(1 + n), gY being the constant
growth rate of output along the balanced growth path;

6On the other hand we do not imply that CRS is always necessary for a balanced
growth path (see Exercise 4.??).
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4.1. Harrod-neutrality and Kaldor’s stylized facts 131

(ii) for any g ≥ 0 such that there is a q > (1 + g)(1 + n)− (1− δ) with the
property that the production function F̃ in (4.4) allows an output-capital
ratio equal to q at t = 0 (i.e., F̃ (1, k̃−1, 0) = q for some real number k̃ > 0), a
suffi cient condition for F̃ to be consistent with a balanced growth path with
output-capital ratio equal to q is that F̃ can be written as in (4.6) with Tt
= A(1 + g)t.

Proof (i) Suppose the given path {(Kt, Yt, Ct)}∞t=0 is a balanced growth path.
By definition, gK and gY are then constant so that Kt = K0(1 + gK)t and Yt
= Y0(1 + gY )t. With t = 0 in (4.4) we then have

Yt(1+gY )−t = Y0 = F̃ (K0, AL0, 0) = F̃ (Kt(1+gK)−t, ALt(1+n)−t, 0). (4.7)

In view of the assumption that St ≡ Yt − Ct > 0, we know from (i) of
Proposition 1, that Y/K is constant so that gY = gK . By CRS, (4.7) then
implies

Yt = F̃ (Kt, A(1 + gY )t(1 + n)−tLt, 0).

We see that (4.6) holds for Tt = A(1 + g)t with 1 + g ≡ (1 + gY )/(1 + n).

(ii) See Appendix B. �

The form (4.6) indicates that along a balanced growth path (BGP from
now), technological progress must be purely labor augmenting, that is, Harrod-
neutral. Moreover, by defining a new CRS production function F by F (Kt, TtLt)
≡ F̃ (Kt, TtLt, 0), we see that (i) of the proposition implies that at least along
the BGP, we can rewrite the original production function this way:

Yt = F̃ (Kt, ALt, t) = F̃ (Kt, TtLt, 0) ≡ F (Kt, TtLt). (4.8)

where T0 = A and Tt = T0(1 + g)t with 1 + g ≡ (1 + gY )/(1 + n).
As emphasized also in Chapter 2, presence of Harrod-neutrality says noth-

ing about what the source of technological progress is. Harrod-neutrality
does not mean that technological change emanates specifically from the la-
bor input. It only means that technical innovations predominantly are such
that not only do labor and capital in combination become more productive,
but this happens to manifest itself such that we can rewrite the aggregate
production function as in (4.8).
What is the intuition behind the Uzawa result that for balanced growth

to be possible, technological progress must at the aggregate level have the
purely labor-augmenting form? First, notice that there is an asymmetry be-
tween capital and labor. Capital is an accumulated amount of non-consumed
output. In contrast, labor is a non-produced production factor which in the
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132 CHAPTER 4. A GROWING ECONOMY

present context grows in an exogenous way. Second, because of CRS, the
original production function, (4.4), implies that

1 = F̃ (
Kt

Yt
,
Lt
Yt
, t). (4.9)

Now, since capital is accumulated non-consumed output, it tends to inherit
the trend in output such that Kt/Yt must be constant along a BGP (this is
what Proposition 1 is about). Labor does not inherit the trend in output;
indeed, the ratio Lt/Yt is free to adjust as t proceeds. When there is techno-
logical progress (∂F̃ /∂t > 0) along a BGP, this progress must manifest itself
in the form of a changing Lt/Yt in (4.9) as t proceeds, precisely becauseKt/Yt
must be constant along the path. In the “normal”case where ∂F̃ /∂L > 0,
the needed change in L(t)/Y (t) is a fall (i.e., rise in Y (t)/L(t)). This is what
(4.9) shows. Indeed, the fall in Lt/Yt must exactly offset the effect on F̃
of the rising t, when there is a fixed capital-output ratio. It follows that
along the BGP, Yt/Lt is an increasing implicit function of t. If we denote this
function Tt, we end up with (4.8).
The generality of Uzawa’s theorem is noteworthy. Like Proposition 1,

Uzawa’s theorem is about technically feasible paths, while economic insti-
tutions, market forms, and agents’behavior are not involved. The theorem
presupposes CRS, but does not need that the technology has neoclassical
properties not to speak of satisfying the Inada conditions. And the theorem
holds for exogenous as well as endogenous technological progress.
A simple implication of the theorem is the following. Let yt denote “labor

productivity”in the sense of Yt/Lt, kt denote the capital-labor ratio, Kt/Lt,
and ct the consumption-labor ratio, Ct/Lt. We have:

COROLLARY Along a BGP with positive gross saving and the technology
level T growing at a constant rate g ≥ 0, output grows at the rate (1+g)(1+
n)−1 (≈ g+n for g and n “small”) while labor productivity, y, capital-labor
ratio, k, and consumption-labor ratio, c, all grow at the rate g.

Proof That gY = (1 + g)(1 + n)− 1 follows from (i) of Proposition 2. As to
gy we have

yt ≡
Yt
Lt

=
Y0(1 + gY )t

L0(1 + n)t
= y0(1 + g)t,

showing that y grows at the rate g. Moreover, y/k = Y/K, which is constant
along a BGP, by (i) of Proposition 1. Hence k grows at the same rate as y.
Finally, also c/y ≡ C/Y is constant along a BGP, implying that also c grows
at the same rate as y. �
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4.1. Harrod-neutrality and Kaldor’s stylized facts 133

Factor income shares

There is one facet of Kaldor’s stylized facts which we have not yet related
to Harrod-neutral technological progress, namely the claimed long-run “ap-
proximate” constancy of the income share of labor and the rate of return
on capital. It turns out that, if we assume (a) neoclassical technology, (b)
profit maximizing firms, and (c) perfect competition in the output and factor
markets, then these constancies are inherent in the combination of constant
returns to scale and balanced growth.
To see this, let the aggregate production function be Yt = F (Kt, TtLt)

where F is neoclassical and has CRS. With wt denoting the real wage at
time t, in equilibrium under perfect competition the labor income share will
be

wtLt
Yt

=
∂Yt
∂Lt

Lt

Yt
=
F2(Kt, TtLt)TtLt

Yt
. (4.10)

When the capital good is nothing but non-consumed output, the rate of
return on capital at time t can be written

rt =
Yt − wtLt − δKt

Kt

=
Yt − wtLt

Yt
· Yt
Kt

− δ. (4.11)

Since land as a production factor is ignored, gross capital income equals
non-labor income, Yt −wtLt. Denoting the gross capital income share by αt,
we thus have

αt =
Yt − wtLt

Yt
=
F (Kt, TtLt)− F2(Kt, TtLt)TtLt

Yt

=
F1(Kt, TtLt)Kt

Yt
=

∂Yt
∂Kt

Kt

Yt
= (rt + δ)

Kt

Yt
, (4.12)

where the third equality comes from Euler’s theorem7 and the last from (4.11.

PROPOSITION 3 (factor income shares) Suppose a given path {(Kt, Yt, Ct)}∞t=0

is a BGP with positive saving in this competitive economy. Then αt = α,
a constant ∈ (0, 1). The labor income share will be 1 − α and the rate of
return on capital αq − δ, where q is the constant output-capital ratio along
the BGP.

Proof We have Yt = F (Kt, TtLt) = TtLtF (k̃t, 1) ≡ TtLtf(k̃t). From Propo-
sition 1 follows that along the given BGP, Yt/Kt is some constant, q. Since
Yt/Kt = f(k̃t)/k̃t and f ′′ < 0, this implies k̃t constant, say equal to k̃∗. Along

7Indeed, from Euler’s theorem follows that F1K + F2TL = F (K,TL), when F is
homogeneous of degree one.
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134 CHAPTER 4. A GROWING ECONOMY

the BGP, ∂Yt/∂Kt (= f ′(k̃t)) thus equals the constant f ′(k̃∗). From (4.12)
then follows that αt = f ′(k̃∗)/q ≡ α. Moreover, 0 < α < 1, since 0 < α is
implied by f ′ > 0, and α < 1 is implied by the fact that q = Y/K = f(k̃∗)/k̃∗

> f ′(k̃∗), in view of f ′′ < 0 and f(0) ≥ 0. So, by the first equality in (4.12),
the labor income share can be written wtLt/Yt = 1 − αt = 1 − α. Conse-
quently, by (4.11), the rate of return on capital is rt = (1−wtLt/Yt)Yt/Kt−δ
= αq − δ. �
Although this proposition implies constancy of the factor income shares

under balanced growth, it does not determine them. The proposition ex-
presses the factor income shares in terms of the unknown constants α and q.
These constants will generally depend on the effective capital-labor ratio in
steady state, k̃∗, which will generally be an unknown as long as we have not
formulated a theory of saving. This takes us back to Diamond’s OLG model
which provides such a theory.

4.2 The Diamond OLG model with Harrod-
neutral technological progress

Recall from the previous chapter that in the Diamond OLG model people
live in two periods, as young and as old. Only the young work and each
young supplies one unit of labor inelastically. The period utility function,
u(c), satisfies the No Fast Assumption. The saving function of the young is
st = s(wt, rt+1). We now include Harrod-neutral technological progress in
the aggregate production function of the Diamond model:

Yt = F (Kt, TtLt), (4.13)

where F is neoclassical with CRS and Tt represents the level of technology
in period t. We assume that Tt grows at a constant exogenous rate, that is,

Tt = T0(1 + g)t, g ≥ 0. (4.14)

The initial level of technology, T0, is historically given. Employment equals
Lt which is the number of young, growing at the constant exogenous rate
n > −1.
Suppressing for a while the explicit dating of the variables, in view of

CRS w.r.t. K and TL, we have

ỹ ≡ Y

TL
= F (

K

TL
, 1) = F (k̃, 1) ≡ f(k̃), f ′ > 0, f ′′ < 0,
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where TL is labor input in effi ciency units and k̃ ≡ K/(TL) is known as the
effective or technology-corrected capital-labor ratio - also sometimes called the
effective capital intensity. There is perfect competition in all markets. In each
period the representative firm maximizes profit, Π = F (K,TL)− r̂K − wL.
With respect to capital this leads to the first-order condition

∂Y

∂K
=
∂
[
TLf(k̃)

]
∂K

= f ′(k̃) = r + δ, (4.15)

where δ is a constant capital depreciation rate, 0 ≤ δ ≤ 1. With respect to
labor we get the first-order condition

∂Y

∂L
=
∂
[
TLf(k̃)

]
∂L

=
[
f(k̃)− f ′(k̃)k̃

]
T = w. (4.16)

In view of f ′′ < 0, a k̃ satisfying (4.15) is unique. Let us denote its value
in period t, k̃dt . Assuming equilibrium in the factor markets, this desired
effective capital-labor ratio equals the effective capital-labor ratio from the
supply side, k̃t ≡ Kt/(TtLt) ≡ kt/Tt, which is predetermined in every period.
The equilibrium interest rate and real wage in period t are thus given by

rt = f ′(k̃t)− δ ≡ r(k̃t), where r′(k̃t) = f ′′(k̃t) < 0, (4.17)

wt =
[
f(k̃t)− f ′(k̃t)k̃

]
Tt ≡ w̃(k̃t)Tt, where w̃′(k̃t) = −k̃tf ′′(k̃t) > 0.

(4.18)

Here, w̃(k̃t) = wt/Tt is known as the technology-corrected real wage.

The equilibrium path

The aggregate capital stock at the beginning of period t + 1 must still be
owned by the old generation in that period and thus equal the aggregate
saving these people did as young in the previous period. Hence, as before,
Kt+1 = stLt = s(wt, rt+1)Lt. In view of Kt+1 ≡ k̃t+1Tt+1Lt+1 = k̃t+1Tt(1 +
g)Lt(1 + n), together with (4.17) and (4.18), we get

k̃t+1 =
s(w̃(k̃t)Tt, r(k̃t+1))

Tt(1 + g)(1 + n)
. (4.19)

This is the general version of the law of motion of the Diamond OLG model
with Harrod-neutral technological progress.
For the model to comply with Kaldor’s “stylized facts”, the model should

be capable of generating balanced growth. Essentially, this capability is
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equivalent to being able to generate a steady state. In the presence of tech-
nological progress this latter capability requires a restriction on the lifetime
utility function, U. Indeed, we see from (4.19) that the model is consistent
with existence of a steady state only if the time-dependent technology level,
Tt, in the numerator and denominator cancels out. This requires that the
saving function is homogeneous of degree one in its first argument such that
s(w̃(k̃t)Tt, r(k̃t+1)) = s(w̃(k̃t), r(k̃t+1))Tt. In turn this is so if and only if the
lifetime utility function of the young is homothetic. So, in addition to the No
Fast Assumption from Chapter 3, we impose the Homotheticity Assumption:

the lifetime utility function U is homothetic. (A4)

This property entails that if the value of the “endowment”, here the human
wealth wt, is multiplied by a λ > 0, then the chosen c1t and c2t+1 are also mul-
tiplied by this factor λ (see Appendix C); it then follows that st is multiplied
by λ as well. Letting λ = 1/(w̃(k̃t)Tt), (A4) thus allows us to write

st = s(1, r(k̃t+1))w̃(k̃t)Tt ≡ ŝ(r(k̃t+1))w̃(k̃t)Tt, (4.20)

where ŝ(r(k̃t+1)) is the saving-wealth ratio of the young. The distinctive fea-
ture is that this saving-wealth ratio is independent of wealth (but in general
it depends on the interest rate). By (4.19), the law of motion of the economy
reduces to

k̃t+1 =
ŝ(r(k̃t+1))

(1 + g)(1 + n)
w̃(k̃t). (4.21)

The equilibrium path of the economy can be analyzed in a similar way
as in the case of no technological progress. In the assumptions (A2) and
(A3) from Chapter 3 we replace k by k̃ and 1 + n by (1 + g)(1 + n). As a
generalization of Proposition 4 from Chapter 3, these generalized versions of
(A2) and (A3), together with the No Fast Assumption (A1) and the Homo-
theticity Assumption (A4), guarantee that there exists at least one locally
asymptotically stable steady state k̃∗ > 0. That is, given these assumptions,
we have k̃t → k̃∗ for t → ∞ and so the system will sooner or later settle
down in a steady state. The convergence of k̃ implies convergence of many
key variables, for instance the equilibrium factor prices given in (4.17) and
(4.18). We see that, for t→∞,

rt = f ′(k̃t)− δ → f ′(k̃∗)− δ ≡ r∗, and

wt =
[
f(k̃t)− k̃tf ′(k̃t)

]
Tt → [f(k∗)− k∗f ′(k∗)]Tt ≡ w̃∗Tt = w̃∗T0(1 + g)t.

The prediction of the model is now that the economy will in the long run
behave in accordance with Kaldor’s stylized facts. Indeed, in many models,
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4.2. The Diamond OLG model with Harrod-neutral technological progress137

including the present one, convergence toward a steady state is equivalent to
saying that the time path of the economy converges toward a BGP. In the
present case, with perfect competition, the implication is that in the long
run the economy will be consistent with Kaldor’s stylized facts.
The claimed equivalence follows from:

PROPOSITION 4 Consider a Diamond economy with Harrod-neutral tech-
nological progress at the constant rate g ≥ 0 and positive gross saving for all
t. Then:
(i) if the economy features balanced growth, then it is in a steady state;
(ii) if the economy is in a steady state, then it features balanced growth.

Proof (i) Suppose the considered economy features balanced growth. Then,
by Proposition 1, Y/K is constant. As Y/K = ỹ/k̃ = f(k̃)/k̃, also k̃ is con-
stant. Thereby the economy is in a steady state. (ii) Suppose the considered
economy is in a steady state, i.e., given (4.21), k̃t = k̃t+1 = k̃∗ for some
k̃∗ > 0. The constancy of k̃ ≡ K/(TL) and ỹ ≡ Y/(TL) = f(k̃) implies that
both gK and gY equal gTL = (1 + g)(1 + n)− 1 > 0. As K and Y thus grow
at the same rate, Y/K is constant. With S ≡ Y − C, constancy of S/K
= (∆K+δK)/K = gK +δ, implies constancy of S/K so that S also grows at
the rate gK and thereby at the same rate as output. Hence S/Y is constant.
Because C/Y ≡ 1− S/Y, also C grows at the constant rate gY . All criteria
for a balanced growth path are thus satisfied. �

Figure 4.4: Transition curve for a well-behaved Diamond OLG model with Harrod-
neutral technical progress.
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Let us portray the dynamics by a transition diagram. Fig. 4.4 shows a
“well-behaved”case in the sense that there is only one steady state. In the
figure the initial effective capital-labor ratio, k̃0, is assumed to be relatively
large. This need not be interpreted as if the economy is highly developed
and has a high initial capital-labor ratio, K0/L0. Indeed, the reason that
k̃0 ≡ K0/(T0L0) is large relative to its steady-steady value may be that the
economy is “backward”in the sense of having a relatively low initial level of
technology. Growing at a given rate g, the technology will in this situation
grow faster than the capital-labor ratio, K/L, so that the effective capital-
labor ratio declines over time. The process continues until the steady state is
essentially reached with a real interest rate r∗ = f ′(k̃∗)− δ. This is to remind
the reader that from an empirical point of view, the adjustment towards a
steady state can be from above as well as from below.
The output growth rate in steady state, (1 + g)(1 + n)− 1, is sometimes

called the “natural rate of growth”. Since (1 + g)(1 + n)− 1 = g+ n+ gn ≈
g + n for g and n “small”, the natural rate of growth approximately equals
the sum of the rate of technological progress and the growth rate of the
labor force. Warning: When measured on an annual basis, the growth rates
of technology and labor force, ḡ and n̄, do indeed tend to be “small”, say
ḡ = 0.02 and n̄ = 0.005, so that ḡ + n̄+ ḡn̄ = 0.0251 ≈ 0.0250 = ḡ + n̄. But
in the context of models like Diamond’s, the period length is, say, 30 years.
Then the corresponding g and n will satisfy the equations 1 + g = (1 + ḡ)30

= 1.0230 = 1.8114 and 1+n = (1+ n̄)30 = 1.00530 = 1.1614, respectively. We
get g + n = 0.973, which is about 10 per cent smaller than the true output
growth rate over 30 years, which is g + n+ gn = 1.104.
We end our account of Diamond’s OLG model with some remarks on a

popular special case of a homothetic utility function.

An example: CRRA period utility

An example of a homothetic lifetime utility function is obtained by letting
the period utility function take the CRRA form introduced in the previous
chapter. Then

U(c1, c2) =
c1−θ

1 − 1

1− θ + (1 + ρ)−1 c
1−θ
2 − 1

1− θ , θ > 0. (4.22)

Recall that the CRRA utility function with parameter θ has the property
that the (absolute) elasticity of marginal utility of consumption equals the
constant θ > 0 for all c > 0. Up to a positive linear transformation it is,
in fact, the only period utility function with this property. A proof that the
utility function (4.22) is indeed homothetic is given in Appendix C.
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One of the reasons that the CRRA function is popular in macroeconomics
is that in representative agent models, the period utility function must have
this form to obtain consistency with balanced growth and Kaldor’s stylized
facts (this is shown in Chapter 7). In contrast, a model with heterogeneous
agents, like the Diamond model, does not need CRRA utility to comply with
the Kaldor facts. CRRA utility is just a convenient special case leading to
homothetic lifetime utility. And this is what is needed for a BGP to exist
and thereby for compatibility with Kaldor’s stylized facts.
Given the CRRA assumption in (4.22), the saving-wealth ratio of the

young becomes

ŝ(r) =
1

1 + (1 + ρ)
(

1+r
1+ρ

)(θ−1)/θ
. (4.23)

It follows that ŝ′(r) R 0 for θ Q 1.
When θ = 1 (the case u(c) = ln c), ŝ(r) = 1/(2 + ρ) ≡ ŝ, a constant, and

the law of motion (4.21) thus simplifies to

k̃t+1 =
1

(1 + g)(1 + n)(2 + ρ)
w̃(k̃t).

We see that in the θ = 1 case, whatever the production function, k̃t+1 en-
ters only at the left-hand side of the fundamental difference equation, which
thereby reduces to a simple transition function. Since w̃′(k̃) > 0, the tran-
sition curve is positively sloped everywhere. If the production function is
Cobb-Douglas, Yt = Kα

t (TtLt)
1−α, then w̃(k̃t) = (1 − α)k̃αt . Combining this

with θ = 1 yields a “well-behaved”Diamond model (thus having a unique
and globally asymptotically stable steady state), cf. Fig. 4.4 above. In fact,
as noted in Chapter 3, in combination with Cobb-Douglas technology, CRRA
utility results in “well-behavedness”whatever the value of θ > 0.

4.3 The golden rule under Harrod-neutral tech-
nological progress

Given that there is technological progress, consumption per unit of labor is
likely to grow over time. Therefore the definition of the golden-rule capital-
labor ratio from Chapter 3 has to be extended to cover the case of growing
consumption per unit of labor. To allow existence of steady states and bal-
anced growth paths, we maintain the assumption that technological progress
is Harrod-neutral, that is, we maintain (4.13) where the technology level, T,
grows at a constant rate g > 0.
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DEFINITION 2 The golden-rule capital intensity, k̃GR, is that level of k̃ ≡
K/(TL) which gives the highest sustainable path for consumption per unit
of labor in the economy.

As before, we let time be discrete but allow the period length to be
arbitrary, possibly one year for instance. Consumption per unit of labor is

ct ≡
Ct
Lt

=
F (Kt, TtLt)− St

Lt
=
f(k̃t)TtLt − (Kt+1 −Kt + δKt)

Lt

= f(k̃t)Tt − (1 + g)Tt(1 + n)k̃t+1 + (1− δ)Ttk̃t
=

[
f(k̃t) + (1− δ)k̃t − (1 + g)(1 + n)k̃t+1

]
Tt.

In a steady state we have k̃t+1 = k̃t = k̃ and therefore

ct =
[
f(k̃) + (1− δ)k̃ − (1 + g)(1 + n)k̃

]
Tt ≡ c̃(k̃)Tt,

where c̃(k̃) is the “technology-corrected” level of consumption per unit of
labor in steady state. We see that in steady state, consumption per unit of
labor will grow at the same rate as the technology. Thus, ln ct = ln c̃(k̃) +
lnT0 + t ln(1 + g). Fig. 4.5 illustrates.
Since the evolution of technology, parameterized by T0 and g, is exoge-

nous, the highest possible path of ct is found by maximizing c̃(k̃). This gives
the first-order condition

c̃′(k̃) = f́ ′(k̃) + (1− δ)− (1 + g)(1 + n) = 0. (4.24)

Assuming, for example, n ≥ 0, we have (1+g)(1+n)−(1−δ) > 0 since g > 0.
Then, by continuity the equation (4.24) necessarily has a unique solution in
k̃ > 0, if the production function satisfies the condition

lim
k̃→0

f ′(k̃) > (1 + g)(1 + n)− (1− δ) > lim
k̃→∞

f ′(k̃),

which is a milder condition than the Inada conditions. Considering the
second-order condition c̃′′(k̃) = f ′′(k̃) < 0, the k̃ satisfying (4.24) does indeed
maximize c̃(k̃). By definition, this k̃ is the golden-rule capital intensity, k̃GR.
Thus

f́ ′(k̃GR)− δ = (1 + g)(1 + n)− 1 ≈ g + n, (4.25)

where the right-hand side is the “natural rate of growth”. This says that the
golden-rule capital intensity is that level of the capital intensity at which the
net marginal productivity of capital equals the output growth rate in steady
state.
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Figure 4.5: The highest sustainable path of consumption is where k̃∗ = k̃GR.

Is dynamic ineffi ciency a problem in practice? As in the Diamond
model without technological progress, it is theoretically possible that the
economy ends up in a steady state with k̃∗ > k̃GR.

8 If this happens, the
economy is dynamically ineffi cient and r∗ < (1 + g)(1 + n)− 1 ≈ g + n. To
check whether dynamic ineffi ciency is a realistic outcome in an industrialized
economy or not, we should compare the observed average GDP growth rate
over a long stretch of time to the average real interest rate or rate of return in
the economy. For the period after the Second World War the average GDP
growth rate (≈ g + n) in Western countries is typically about 3 per cent per
year. But what interest rate should one choose? In simple macro models,
like the Diamond model, there is no uncertainty and no need for money to
carry out trades. In such models all assets earn the same rate of return, r, in
equilibrium. In the real world there is a spectrum of interest rates, reflecting
the different risk and liquidity properties of the different assets. The expected
real rate of return on a short-term government bond is typically less than
3 per cent per year (a relatively safe and liquid asset). This is much lower
than the expected real rate of return on corporate stock, 7-9 per cent per
year. Our model cannot tell which rate of return we should choose, but the
conclusion hinges on that choice.
Abel et al. (1989) study the problem on the basis of a model with uncer-

tainty. They show that a suffi cient condition for dynamic effi ciency is that
gross investment, I, does not exceed the gross capital income in the long run,
that is I ≤ Y −wL. They find that for the U.S. and six other major OECD
nations this seems to hold. Indeed, for the period 1929-85 the U.S. has, on
average, I/Y = 0.15 and (Y −wL)/Y = 0.29. A similar difference is found for
other industrialized countries, suggesting that they are dynamically effi cient.

8The proof is analogue to that in Chapter 3 for the case g = 0.
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At least in these countries, therefore, the potential coordination failure laid
bare by OLG models does not seem to have been operative in practice.

4.4 The functional distribution of income

.....Text to be inserted

The neoclassical theory

.....Text to be inserted

How the labor income share depends on the capital-labor ratio

To begin with we ignore technological progress and write aggregate output
as Y = F (K,L), where F is neoclassical with CRS. From Euler’s theorem
follows that F (K,L) = F1K + F2L = f ′(k)K + (f(k) − kf ′(k))L, where
k ≡ K/L. In equilibrium under perfect competition we have

Y = r̂K + wL,

where r̂ = r + δ is the cost per unit of capital input and w is the real wage,
i.e., the cost per unit of labor input. The labor income share is

wL

Y
=
f(k)− kf ′(k)

f(k)
≡ w(k)

f(k)
≡ SL(k) =

wL

r̂K + wL
=

w/r̂
k

1 + w/r̂
k

,

where the function SL(·) is the share of labor function and w/r̂ is the factor
price ratio.
Suppose that capital tends to grow faster than labor so that k rises over

time. Unless the production function is Cobb-Douglas, this will under perfect
competition affect the labor income share. But apriori it is not obvious in
what direction. If the proportionate rise in the factor price ratio w/r̂ is
greater (smaller) than that in k, then SL goes up (down). Indeed, if we let
E`xg(x) denote the elasticity of a function g(x) w.r.t. x, then

SL′(k) R 0 for E`k
w

r̂
R 1,

respectively.
Usually, however, the inverse elasticity is considered, namely E`w/r̂k. This

elasticity, which indicates how sensitive the cost minimizing capital-labor
ratio, k, is to a given factor price ratio w/r̂, coincides with the elasticity of
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factor substitution (for a general definition, see below). The latter is often
denoted σ. Since in the CRS case, σ will be a function of only k, we write
E`w/r̂k = σ(k). We therefore have

SL′(k) R 0 for σ(k) Q 1,

respectively. If F is Cobb-Douglas, i.e., Y = KαL1−α, 0 < α < 1, we have
σ(k) ≡ 1, cf. the next section. In this case variation in k does not change
the labor income share under perfect competition. Empirically there is not
complete agreement about the “normal”size of the elasticity of factor substi-
tution for industrialized economies, but the bulk of studies seems to conclude
with σ(k) < 1 (see Section 4.5).
Now, let us add Harrod-neutral technical progress to the discussion. So

we write aggregate output as Y = F (K,TL), where F is neoclassical with
CRS, and T = Tt = T0(1 + g)t. Then the labor income share is

wL

Y
=

w/T

Y/(TL)
≡ w̃

ỹ
.

The above formulas still hold if we replace k by k̃ ≡ K/(TL) and w by w̃
≡ w/T.While k empirically is clearly growing, k̃ ≡ k/T is not necessarily so
because also T is increasing.
As we have seen, Kaldor’s stylized facts essentially means that, apart from

short-run fluctuations, k̃ and therefore also r̂ and the labor income share
tend to be constant over time, independently of the sign of σ(k̃)− 1. Given
the production function f , the elasticity of substitution between capital and
labor does not depend on the presence or absence of Harrod-neutral technical
progress, but only on the function itself. This is because under Harrod-
neutrality, the technology level T only appears as a multiplicative factor
to L, whereby T cancels out in the calculation of the elasticity of factor
substitution.
As alluded to earlier, there are empiricists who reject Kaldor’s “facts”

as a general tendency. For instance Piketty (2014) claims that the effective
capital-labor ratio k̃ has an upward trend, temporarily braked by two world
wars and the Great Depression in the 1930s. If so, the sign of σ(k̃) − 1
becomes decisive for in what direction wL/Y will move. Piketty interprets
the econometric literature as favoring σ(k̃) > 1, which means there should
be downward pressure on wL/Y . This source behind a falling wL/Y can
be questioned, however. Indeed, σ(k̃) > 1 contradicts the more general
empirical view referred to above. According to Summers (2014), Piketty’s
interpretation relies on conflating gross and net returns to capital.
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Immigration

Here is another example that illustrates the importance of the size of σ(k̃).
Consider an economy with perfect competition and a given aggregate cap-
ital stock K and technology level T (entering the production function in
the labor-augmenting way as above). Suppose that for some reason, im-
migration, say, aggregate labor supply, L, shifts up and full employment is
maintained by the needed real wage adjustment. In what direction will ag-
gregate labor income wL = w̃(k̃)TL then change? The effect of the larger
L is to some extent offset by a lower w brought about by the lower effective
capital-labor ratio. Indeed, in view of dw̃/dk̃ = −k̃f ′′(k̃) > 0, we have k̃ ↓
implies w ↓ for fixed T. So we cannot apriori sign the change in wL. The
following relationship can be shown (Exercise 4.??), however:

∂(wL)

∂L
= (1− α(k̃)

σ(k̃)
)w R 0 for α(k̃) Q σ(k̃), (4.26)

respectively, where a(k̃) ≡ k̃f ′(k̃)/f(k̃) is the output elasticity w.r.t. capital
which under perfect competition equals the gross capital income share. It
follows that the larger L will not be fully offset by the lower w as long as the
elasticity of factor substitution, σ(k̃), exceeds the gross capital income share,
α(k̃). This condition seems confirmed by most of the empirical evidence (see,
e.g., Antras 2004 and Chirinko 2008).

The elasticity of factor substitution*

We shall here discuss the concept of elasticity of factor substitution at a
more general level. Fig. 4.6 depicts an isoquant, F (K,L) = Ȳ , for a given
neoclassical production function, F (K,L), which need not have CRS. Let
MRS denote the marginal rate of substitution of K for L, i.e., MRS =
FL(K,L)/FK(K,L).9 At a given point (K,L) on the isoquant curve, MRS
is given by the absolute value of the slope of the tangent to the isoquant at
that point. This tangent coincides with that isocost line which, given the
factor prices, has minimal intercept with the vertical axis while at the same
time touching the isoquant. In view of F (·) being neoclassical, the isoquants
are by definition strictly convex to the origin. Consequently, MRS is rising
along the curve when L decreases and thereby K increases. Conversely, we
can let MRS be the independent variable and consider the corresponding
point on the indifference curve, and thereby the ratio K/L, as a function of

9When there is no risk of confusion as to what is up and what is down, we use MRS
as a shorthand for the more correct MRSKL.
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MRS. If we let MRS rise along the given isoquant, the corresponding value
of the ratio K/L will also rise.

Figure 4.6: Substitution of capital for labor as the marginal rate of substitution
increases from MRS to MRS′.

The elasticity of substitution between capital and labor is defined as the
elasticity of the ratio K/L with respect to MRS when we move along a
given isoquant, evaluated at the point (K,L). Let this elasticity be denoted
σ̃(K,L). Thus,

σ̃(K,L) =
MRS

K/L

d(K/L)

dMRS |Y=Ȳ
=

d(K/L)
K/L

dMRS
MRS |Y=Ȳ

. (4.27)

Although the elasticity of factor substitution is a characteristic of the tech-
nology as such and is here defined without reference to markets and factor
prices, it helps the intuition to refer to factor prices. At a cost-minimizing
point, MRS equals the factor price ratio w/r̂. Thus, the elasticity of fac-
tor substitution will under cost minimization coincide with the percentage
increase in the ratio of the cost-minimizing factor ratio induced by a one
percentage increase in the inverse factor price ratio, holding the output level
unchanged.10 The elasticity of factor substitution is thus a positive number
and reflects how sensitive the capital-labor ratioK/L is under cost minimiza-
tion to an increase in the factor price ratio w/r̂ for a given output level. The
less curvature the isoquant has, the greater is the elasticity of factor substitu-
tion. In an analogue way, in consumer theory one considers the elasticity of

10This characterization is equivalent to interpreting the elasticity of substitution as the
percentage decrease in the factor ratio (when moving along a given isoquant) induced by
a one-percentage increase in the corresponding factor price ratio.
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substitution between two consumption goods or between consumption today
and consumption tomorrow, cf. Chapter 3. In that context the role of the
given isoquant is taken over by an indifference curve. That is also the case
when we consider the intertemporal elasticity of substitution in labor supply,
cf. the next chapter.
Calculating the elasticity of substitution between K and L at the point

(K,L), we get

σ̃(K,L) = − FKFL(FKK + FLL)

KL [(FL)2FKK − 2FKFLFKL + (FK)2FLL]
, (4.28)

where all the derivatives are evaluated at the point (K,L). When F (K,L)
has CRS, the formula (4.28) simplifies to

σ̃(K,L) =
FK(K,L)FL(K,L)

FKL(K,L)F (K,L)
= −f

′(k) (f(k)− f ′(k)k)

f ′′(k)kf(k)
≡ σ(k), (4.29)

where k ≡ K/L.11 We see that under CRS, the elasticity of substitution
depends only on the capital-labor ratio k, not on the output level. We will
now consider the case where the elasticity of substitution is independent also
of the capital-labor ratio.

4.5 The CES production function*

It can be shown12 that if a neoclassical production function with CRS has a
constant elasticity of factor substitution different from one, it must be of the
form

Y = A
[
αKβ + (1− α)Lβ

] 1
β , (4.30)

where A, α, and β are parameters satisfying A > 0, 0 < α < 1, and β < 1,
β 6= 0. This function has been used intensively in empirical studies and is
called a CES production function (CES for Constant Elasticity of Substitu-
tion). For a given choice of measurement units, the parameter A reflects
effi ciency (or what is known as total factor productivity) and is thus called
the effi ciency parameter. The parameters α and β are called the distribu-
tion parameter and the substitution parameter, respectively. The restriction
β < 1 ensures that the isoquants are strictly convex to the origin. Note that
if β < 0, the right-hand side of (4.30) is not defined when either K or L (or
both) equal 0. We can circumvent this problem by extending the domain of

11The formulas (4.28) and (4.29) are derived in Appendix D.
12See, e.g., Arrow et al. (1961).
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the CES function and assign the function value 0 to these points when β < 0.
Continuity is maintained in the extended domain (see Appendix E).
By taking partial derivatives in (4.30) and substituting back we get

∂Y

∂K
= αAβ

(
Y

K

)1−β

and
∂Y

∂L
= (1− α)Aβ

(
Y

L

)1−β

, (4.31)

where Y/K = A
[
α + (1− α)k−β

] 1
β and Y/L = A

[
αkβ + 1− α

] 1
β . The mar-

ginal rate of substitution of K for L therefore is

MRS =
∂Y/∂L

∂Y/∂K
=

1− α
α

k1−β > 0.

Consequently,
dMRS

dk
=

1− α
α

(1− β)k−β,

where the inverse of the right-hand side is the value of dk/dMRS. Substitut-
ing these expressions into (4.27) gives

σ̃(K,L) =
1

1− β ≡ σ, (4.32)

confirming the constancy of the elasticity of substitution. Since β < 1, σ > 0
always. A higher substitution parameter, β, results in a higher elasticity of
factor substitution, σ. And σ ≶ 1 for β ≶ 0, respectively.
Since β = 0 is not allowed in (4.30), at first sight we cannot get σ = 1

from this formula. Yet, σ = 1 can be introduced as the limiting case of (4.30)
when β → 0, which turns out to be the Cobb-Douglas function. Indeed, one
can show13 that, for fixed K and L,

A
[
αKβ + (1− α)Lβ

] 1
β → AKαL1−α, for β → 0.

By a similar procedure as above we find that a Cobb-Douglas function always
has elasticity of substitution equal to 1; this is exactly the value taken by
σ in (4.32) when β = 0. In addition, the Cobb-Douglas function is the
only production function that has unit elasticity of substitution whatever
the capital-labor ratio.
Another interesting limiting case of the CES function appears when, for

fixed K and L, we let β → −∞ so that σ → 0. We get

A
[
αKβ + (1− α)Lβ

] 1
β → Amin(K,L), for β → −∞. (4.33)

13Proofs of this and the further claims below are in Appendix E.
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So in this case the CES function approaches a Leontief production function,
the isoquants of which form a right angle, cf. Fig. 4.7. In the limit there is no
possibility of substitution between capital and labor. In accordance with this
the elasticity of substitution calculated from (4.32) approaches zero when β
goes to −∞.
Finally, let us consider the “opposite”transition. For fixed K and L we

let the substitution parameter rise towards 1 and get

A
[
αKβ + (1− α)Lβ

] 1
β → A [αK + (1− α)L] , for β → 1.

Here the elasticity of substitution calculated from (4.32) tends to ∞ and
the isoquants tend to straight lines with slope −(1 − α)/α. In the limit,
the production function thus becomes linear and capital and labor become
perfect substitutes.

0 1 2 3 4 5 6 7

1

2

3

4

5

σ = 0

σ = 0.5

σ = 1σ = 1.5

σ = ∞
2
A

2
A

2
Aα

2
A(1−α)

L

K

Figure 4.7: Isoquants for the CES function for alternative values of σ (A = 1.5,
Ȳ = 2 and α = 0.42).

Fig. 4.7 depicts isoquants for alternative CES production functions and
their limiting cases. In the Cobb-Douglas case, σ = 1, the horizontal and
vertical asymptotes of the isoquant coincide with the coordinate axes. When
σ < 1, the horizontal and vertical asymptotes of the isoquant belong to the
interior of the positive quadrant. This implies that both capital and labor
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are essential inputs. When σ > 1, the isoquant terminates in points on
the coordinate axes. Then neither capital, nor labor are essential inputs.
Empirically there is not complete agreement about the “normal”size of the
elasticity of factor substitution for industrialized economies. The elasticity
also differs across the production sectors. A thorough econometric study
(Antràs, 2004) of U.S. data indicate the aggregate elasticity of substitution
to be in the interval (0.5, 1.0). The survey by Chirinko (2008) concludes with
the interval (0.4, 0.6). Starting from micro data, a recent study by Oberfield
and Raval (2014) finds that the elasticity of factor substitution for the US
manufacturing sector as a whole has been stable since 1970 at about 0.7.

The CES production function in intensive form

Dividing through by L on both sides of (4.30), we obtain the CES production
function in intensive form,

y ≡ Y

L
= A(αkβ + 1− α)

1
β , (4.34)

where k ≡ K/L. The marginal productivity of capital can be written

MPK =
dy

dk
= αA

[
α + (1− α)k−β

] 1−β
β = αAβ

(y
k

)1−β
,

which of course equals ∂Y/∂K in (4.31). We see that the CES function
violates either the lower or the upper Inada condition for MPK, depending
on the sign of β. Indeed, when β < 0 (i.e., σ < 1), then for k → 0 both y/k
and dy/dk approach an upper bound equal to Aα1/β < ∞, thus violating
the lower Inada condition for MPK (see the right-hand panel of Fig. 2.3 of
Chapter 2). It is also noteworthy that in this case, for k →∞, y approaches
an upper bound equal to A(1 − α)1/β < ∞. These features reflect the low
degree of substitutability when β < 0.
When instead β > 0, there is a high degree of substitutability (σ > 1).

Then, for k →∞ both y/k and dy/dk → Aα1/β > 0, thus violating the upper
Inada condition forMPK (see right panel of Fig. 4.8). It is also noteworthy
that for k → 0, y approaches a positive lower bound equal to A(1−α)1/β > 0.
Thus, in this case capital is not essential. At the same time dy/dk →∞ for
k → 0 (so the lower Inada condition for the marginal productivity of capital
holds). Details are in Appendix E.
The marginal productivity of labor is

MPL =
∂Y

∂L
= (1− α)Aβy1−β = (1− α)A(αkβ + 1− α)(1−β)/β ≡ w(k),
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from (4.31).
Since (4.30) is symmetric in K and L, we get a series of symmetric results

by considering output per unit of capital as x≡ Y/K = A
[
α + (1− α)(L/K)β

]1/β
.

In total, therefore, when there is low substitutability (β < 0), for fixed input
of either of the production factors, there is an upper bound for how much
an unlimited input of the other production factor can increase output. And
when there is high substitutability (β > 0), there is no such bound and an
unlimited input of either production factor take output to infinity.
The Cobb-Douglas case, i.e., the limiting case for β → 0, constitutes in

several respects an intermediate case in that all four Inada conditions are
satisfied and we have y → 0 for k → 0, and y →∞ for k →∞.

0 5 10

5

A (1 − α)
1
β

∆x ·Aα
1
β

∆x

a) The case of σ < 1.

k

y

0 5 10

5

A (1 − α)
1
β

∆x ·Aα
1
β

∆x

a) The case of σ > 1.

k

y

Figure 4.8: The CES production function in intensive form; σ = 1/(1− β), β < 1.

Generalizations

The CES production function considered above has CRS. By adding an elas-
ticity of scale parameter, γ, we get the generalized form

Y = A
[
αKβ + (1− α)Lβ

] γ
β , γ > 0. (4.35)

In this form the CES function is homogeneous of degree γ. For 0 < γ < 1,
there are DRS, for γ = 1 CRS, and for γ > 1 IRS. If γ 6= 1, it may be
convenient to consider Q ≡ Y 1/γ = A1/γ

[
αKβ + (1− α)Lβ

]1/β
and q ≡ Q/L

= A1/γ(αkβ + 1− α)1/β.
The elasticity of substitution between K and L is σ = 1/(1−β) whatever

the value of γ. So including the limiting cases as well as non-constant returns
to scale in the “family”of production functions with constant elasticity of
substitution, we have the simple classification displayed in Table 4.1.
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Table 4.1 The family of production functions
with constant elasticity of substitution.

σ = 0 0 < σ < 1 σ = 1 σ > 1
Leontief CES Cobb-Douglas CES

Note that only for γ ≤ 1 is (4.35) a neoclassical production function.
This is because, when γ > 1, the conditions FKK < 0 and FNN < 0 do not
hold everywhere.
We may generalize further by assuming there are n inputs, in the amounts

X1, X2, ..., Xn. Then the CES production function takes the form

Y = A
[
α1X1

β + α2X2
β + ...αnXn

β
] γ
β , αi > 0 for all i,

∑
i

αi = 1, γ > 0.

(4.36)
In analogy with (4.27), for an n-factor production function the partial elas-
ticity of substitution between factor i and factor j is defined as

σij =
MRSij
Xi/Xj

d(Xi/Xj)

dMRSij |Y=Ȳ

,

where it is understood that not only the output level but also all Xk, k 6= i, j,
are kept constant. Note that σji = σij. In the CES case considered in (4.36),
all the partial elasticities of substitution take the same value, 1/(1− β).

4.6 Concluding remarks

(incomplete)
When speaking of “sustained growth”in variables like K, Y, and C, we

do not mean growth in a narrow physical sense. We should understand
for instance K broadly as “produced means of production”of rising quality
and falling material intensity. Similarly, C must be seen as a composite
of consumer “goods” with declining material intensity over time.14 This
accords with the empirical fact that as income rises, the share of consumption
expenditures devoted to agricultural and industrial products declines and
the share devoted to services, hobbies, and amusement increases. Although
“economic development” is perhaps a more appropriate term (suggesting
qualitative and structural change), we retain standard terminology and speak
of “economic growth”.

14See Fagnart and Germain (2011).
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4.7 Literature notes and discussion

1. We introduced the assumption that at the macroeconomic level the “di-
rection” of technological progress tends to be Harrod-neutral. Otherwise
the model will not be consistent with Kaldor’s stylized facts. The Harrod-
neutrality of the “direction”of technological progress is in the present model
just an exogenous feature. This raises the question whether there are mecha-
nisms tending to generate Harrod-neutrality. Fortunately new growth theory
provides clues as to the sources of the speed as well as the direction of tech-
nological change. A facet of this theory is that the direction of technological
change is linked to the same economic forces as the speed, namely profit
incentives. See Acemoglu (2003) and Jones (2006).
2. In Section 4.2 we claimed that from an empirical point of view, the

adjustment towards a steady state can be from above as well as from below.
Indeed, Cho and Graham (1996) find that “on average, countries with a lower
income per adult are above their steady-state positions, while countries with
a higher income are below their steady-state positions”.
As to the assessment of the role of uncertainty for the condition that

dynamic effi ciency is satisfied, in addition to Abel et al. (1989) other useful
sources include Ball et al. (1998) and Blanchard and Weil (2001).
3. In the Diamond OLG model as well as in many other models, a steady

state and a balanced growth path imply each other. Indeed, they are two
sides of the same process. There exist cases, however, where this equivalence
does not hold (some open economy models and some models with embodied
technological change, see Groth et al., 2010). Therefore, it is recommendable
always to maintain a terminological distinction between the two concepts.
4. Based on time-series econometrics, Attfield and Temple (2010) and

others find support for the Kaldor “facts”for the US and UK and thereby for
an evolution roughly obeying balanced growth in terms of aggregate variables.
This does not rule out structural change. A changing sectorial composition
of the economy is under certain conditions compatible with balanced growth
(in a generalized sense) at the aggregate level, cf. the “Kuznets facts”(see
Kongsamut et al., 2001, and Acemoglu, 2009).
5. Cases where the equivalence between steady state and balanced growth

does not hold include some open economy models and some models with
embodied technological change, see, e.g., Groth et al. (2010).
6. La Grandville (2009) contains a lot about analytical aspects linked to

the CES production function and the concept of elasticity of factor substitu-
tion.
From here incomplete:
Piketty (2014), Zucman.
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Demange and Laroque (1999, 2000) extend Diamond’s OLG model to
uncertain environments.
Keeping-up-with-the-Jones externalities. Do we work too much?
Blanchard, O., (2004) The Economic Future of Europe, J. Economic Per-

spectives, vol. 18 (4), 3-26.
Prescott, E. (2003), Why do Americans work so much more than Eu-

ropeans? Federal Reserve Bank of Minneapolis Research Department Staff
Report No. 321. I Ch. 5?
Chari, V. V., and P. J. Kehoe (2006), Modern macroeconomics in practice:

How theory is shaping policy, J. of Economic Perspectives, vol. 20 (4), 3-28.
For expositions in depth of OLG modeling and dynamics in discrete time,

see Azariadis (1993), de la Croix and Michel (2002), and Bewley (2007).
Dynamic ineffi ciency, see also Burmeister (1980).
Two-sector OLG: Galor (1992). Galor’s book??
Bewley (2007).
Uzawa’s theorem: Uzawa (1961), Schlicht (2006).
The way the intuition behind the Uzawa theorem was presented in Section

4.1 draws upon Jones and Scrimgeour (2008).
La Grandville’s normalization of the CES function.
For more general and flexible production functions applied in econometric

work, see, e.g., Nadiri (1982).
Other aspects of life cycle behavior: education. OLG where people live

three periods.
Piketty and Zucman. may fit into Section 4.1: the empirical questioning

of Kaldor’s stylized facts.

4.8 Appendix

A. Growth and interest arithmetic in discrete time

Let t = 0,±1,±2, . . . , and consider the variables zt, xt, and yt, assumed
positive for all t. Define ∆zt = zt − zt−1 and ∆xt and ∆yt similarly. These
∆’s need not be positive. The growth rate of xt from period t− 1 to period t
is defined as ∆xt/xt−1 ≡ xt/xt−1. And the growth factor for xt from period
t− 1 to period t is defined as 1 + xt/xt−1.
As we are here interested not in the evolution of growth rates, we simplify

notation by suppressing the t’s. So we write the growth rate of x as gx ≡
∆x/x−1 and similarly for y and z.

PRODUCT RULE If z = xy, then 1+gz = (1+gx)(1+gy) and gz ≈ gx+gy,
when gx and gy are “small”.
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Proof. By definition, z = xy, which implies z−1+∆z = (x−1+∆x)(y−1+∆y).
Dividing by z−1 = x−1y−1 gives 1 + ∆z/z−1 = (1 + ∆x/x−1)(1 + ∆y/y−1) as
claimed. By carrying out the multiplication on the right-hand side of this
equation, we get 1 + ∆z/z−1 = 1 + ∆x/x−1 + ∆y/y−1 + (∆x/x−1)(∆y/y−1)
≈ 1 + ∆x/x−1 + ∆y/y1 when ∆x/x−1 and ∆y/y−1 are “small”. Subtracting
1 on both sides gives the stated approximation. �
So the product of two positive variables will grow at a rate approximately

equal to the sum of the growth rates of the two variables.

FRACTION RULE If z = x
y
, then 1 + gz = 1+gx

1+gy
and gz ≈ gx − gy, when gx

and gy are “small”.

Proof. By interchanging z and x in Product Rule and rearranging, we get
1 + ∆z/z−1 = 1+∆x/x−1

1+∆y/y−1
, as stated in the first part of the claim. Subtracting

1 on both sides gives ∆z/z−1 = ∆x/x−1−∆y/y−1

1+∆y/y−1
≈ ∆x/x−1 − ∆y/y−1, when

∆x/x−1 and ∆y/y−1 are “small”. This proves the stated approximation. �
So the ratio between two positive variables will grow at a rate approxi-

mately equal to the excess of the growth rate of the numerator over that of
the denominator. An implication of the first part of Claim 2 is: the ratio
between two positive variables is constant if and only if the variables have
the same growth rate (not necessarily constant or positive).

POWER FUNCTION RULE If z = xα, then 1 + gz = (1 + gx)
α.

Proof. 1 + gz ≡ z/z−1 = (x/x−1)α ≡ (1 + gx)
α. �

Given a time series x0, x1, ..., xn, by the average growth rate per period,
or more precisely, the average compound growth rate, is meant a g which
satisfies xn = x0(1 + g)n. The solution for g is g = (xn/x0)1/n − 1.
Finally, the following approximation may be useful (for intuition) if used

with caution:

THE GROWTH FACTOR With n denoting a positive integer above 1 but
“not too large”, the growth factor (1 + g)n can be approximated by 1 + ng
when g is “small”. For g 6= 0, the approximation error is larger the larger is
n.

Proof. (i) We prove the claim by induction. Suppose the claim holds for
a fixed n ≥ 2, i.e., (1 + g)n ≈ 1 + ng for g “small”. Then (1 + g)n+1 =
(1 + g)n(1 + g) ≈ (1 + ng)(1 + g) = 1 + ng + g + ng2 ≈ 1 + (n+ 1)g since g
“small” implies g2 “very small”and therefore ng2 “small” if n is not “too”
large. So the claim holds also for n+ 1. Since (1 +g)2 = 1 + 2g+g2 ≈ 1 + 2g,
for g “small”, the claim does indeed hold for n = 2. �
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THE EFFECTIVE ANNUAL RATE OF INTEREST Suppose interest on
a loan is charged n times a year at the rate r/n per year. Then the effective
annual interest rate is (1 + r/n)n − 1.

B. Proof of the suffi ciency part of Uzawa’s theorem

For convenience we restate the full theorem here:

PROPOSITION 2 (Uzawa’s balanced growth theorem). Let {(Kt, Yt, Ct)}∞t=0

be a path along which Yt, Kt, Ct, and St ≡ Yt − Ct are positive for all
t = 0, 1, 2, . . . , and satisfy the dynamic resource constraint (4.2), given the
production function (4.4) and the labor force (4.5). Assume (1 + g)(1 + n)
> 1− δ. Then:
(i) a necessary condition for this path to be a balanced growth path is that
along the path it holds that

Yt = F̃ (Kt, TtLt, 0), (*)

where Tt = A(1 + g)t with 1 + g ≡ (1 + gY )/(1 + n), gY being the constant
growth rate of output along the balanced growth path;
(ii) for any g ≥ 0 such that there is a q > (1 + g)(1 + n)− (1− δ) with the
property that the production function F̃ in (4.4) allows an output-capital
ratio equal to q at t = 0 (i.e., F̃ (1, k̃−1, 0) = q for some real number k̃ > 0),
a suffi cient condition for F̃ to be consistent with a balanced growth path
with output-capital ratio equal to q is that F̃ can be written as in (*) with
Tt = A(1 + g)t.

Proof (i) See Section 4.1. (ii) Suppose (*) holds with Tt = A(1 + g)t. Let
g ≥ 0 be given such that there is a q > (1 + g)(1 + n)− (1− δ) > 0 with the
property that

F̃ (1, k̃−1, 0) = q (**)

for some constant k̃ > 0. Our strategy is to prove the claim by construction
of a path P = (Yt, Kt, Ct)

∞
t=0 which satisfies it. We let P be such that the

saving-income ratio is a constant ŝ ≡ [(1 + g)(1 + n)− (1− δ)] /q ∈ (0, 1),
i.e., Yt − Ct ≡ St = ŝYt for all t = 0, 1, 2, . . . . Inserting this, together with
Yt = f(k̃t)TtLt, where f(k̃t) ≡ F̃ (k̃t, 1, 0) and k̃t ≡ Kt/(TtLt), into (4.2),
rearranging gives the Solow equation (4.3), which we may rewrite as

k̃t+1 − k̃t =
ŝf(k̃t)− [(1 + g)(1 + n)− (1− δ)] k̃t

(1 + g)(1 + n)
.

We see that k̃t is constant if and only if k̃t satisfies the equation f(k̃t)/k̃t
= [(1 + g)(1 + n)− (1− δ)] /ŝ ≡ q. By (**) and the definition of f, the
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required value of k̃t is k̃, which is thus the steady state for the constructed
Solow model. Letting K0 satisfy K0 = k̃AL0, where A = T0, we thus have
k̃0 = K0/(T0L0) = k̃. So that the initial value of k̃t equals the steady-state
value. It follows that k̃t = k̃ for all t = 0, 1, 2, . . . , and so Yt/Kt = f(k̃t)/k̃t
= f(k̃)/k̃ = q for all t ≥ 0. In addition, Ct = (1 − ŝ)Yt, so that Ct/Yt is
constant along the path P. As both Y/K and C/Y are thus constant along
the path P , by (ii) of Proposition 1 follows that P is a balanced growth path.
�
It is noteworthy that the proof of the suffi ciency part of the theorem is

constructive. It provides a method for constructing a balanced growth path
with a given technology growth rate and a given output-capital ratio.

C. Homothetic utility functions

Generalities A set C in Rn is called a cone if x ∈ C and λ > 0 implies
λx ∈ C. A function f(x) = f(x1,. . . ,xn) is homothetic in the cone C if for
all x,y ∈ C and all λ > 0, f(x) = f(y) implies f(λx) = f(λy).
Consider the continuous utility function U(x1, x2), defined in R2

+. Suppose
U is homothetic and that the consumption bundles (x1, x2) and (y1, y2) are on
the same indifference curve, i.e., U(x1, x2) = U(y1, y2). Then for any λ > 0 we
have U(λx1, λx2) = U(λy1, λy2) so that the bundles (λx1, λx2) and (λy1, λy2)
are also on the same indifference curve.
For a continuous utility function U(x1, x2), defined in R2

+ and increasing
in each of its arguments (as is our life time utility function in the Diamond
model), one can show that U is homothetic if and only if U can be written
U(x1, x2) ≡ F (f(x1, x2)) where the function f is homogeneous of degree one
and F is an increasing function. The “if” part is easily shown. Indeed, if
U(x1, x2) = U(y1, y2), then F (f(x1, x2)) = F (f(y1, y2)). Since F is increasing,
this implies f(x1, x2) = f(y1, y2). Because f is homogeneous of degree one,
if λ > 0, then f(λx1, λx2) = λf(x1, x2) and f(λy1, λy2) = λf(y1, y2) so that
U(λx1, λx2) = F (f(λx1, λx2)) = F (f(λy1, λy2)) = U(λy1, λy2), which shows
that U is homothetic. As to the “only if”part, see Sydsaeter et al. (2002).
Using differentiability of our homothetic time utility function U(x1, x2) ≡

F (f(x1, x2)), we find the marginal rate of substitution of good 2 for good 1
to be

MRS =
dx2

dx1 |U=Ū

=
∂U/∂x1

∂U/∂x2

=
F ′f1(x1, x2)

F ′f2(x1, x2)
=
f1(1, x2

x1
)

f2(1, x2

x1
)
. (4.37)

The last equality is due to Euler’s theorem saying that when f is homoge-
neous of degree 1, then the first-order partial derivatives of f are homoge-
neous of degree 0. Now, (4.37) implies that for a given MRS, in optimum

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



4.8. Appendix 157

reflecting a given relative price of the two goods, the same consumption ra-
tio, x2/x1, will be chosen whatever the budget. For a given relative price, a
rising budget (rising wealth) will change the position of the budget line, but
not its slope. So MRS will not change, which implies that the chosen pair
(x1, x2) will move outward along a given ray in R2

+. Indeed, as the intercepts
with the axes rise proportionately with the budget (the wealth), so will x1

and x2.

Proof that the utility function in (4.22) is homothetic In Section 4.2
we claimed that (4.22) is a homothetic utility function. This can be proved
in the following way. There are two cases to consider. Case 1: θ > 0, θ 6= 1.
We rewrite (4.22) as

U(c1, c2) =
1

1− θ
[
(c1−θ

1 + βc1−θ
2 )1/(1−θ)]1−θ − 1 + β

1− θ ,

where β ≡ (1 + ρ)−1. The function x = g(c1, c2) ≡ (c1−θ
1 + βc1−θ

2 )1/(1−θ) is
homogeneous of degree one and the function G(x) ≡ (1/(1− θ))x1−θ − (1 +
β)/(1− θ) is an increasing function, given θ > 0, θ 6= 1. Case 2: θ = 1. Here
we start from U(c1, c2) = ln c1 + β ln c2. This can be written

U(c1, c2) = (1 + β) ln
[
(c1c

β
2 )1/(1+β)

]
,

where x = g(c1, c2) = (c1c
β
2 )1/(1+β) is homogeneous of degree one and G(x)

≡ (1 + β) lnx is an increasing function. �

D. General formulas for the elasticity of factor substitution

We here prove (4.28) and (4.29). Given the neoclassical production function
F (K,L), the slope of the isoquant F (K,L) = Ȳ at the point (K̄, L̄) is

dK

dL |Y=Ȳ
= −MRS = −FL(K̄, L̄)

FK(K̄, L̄)
. (4.38)

We consider this slope as a function of the value of k ≡ K/L as we move
along the isoquant. The derivative of this function is

−dMRS

dk |Y=Ȳ
= −dMRS

dL |Y=Ȳ

dL

dk |Y=Ȳ

= −(FL)2FKK − 2FKFLFKL + (FK)2FLL
F 3
K

dL

dk |Y=Ȳ
(4.39)
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by (2.51) of Chapter 2. In view of L ≡ K/k we have

dL

dk |Y=Ȳ
=
k dK
dk |Y=Ȳ

−K

k2
=
k dK
dL |Y=Ȳ

dL
dk |Y=Ȳ

−K

k2
=
−kMRS dL

dk |Y=Ȳ
−K

k2
.

From this we find
dL

dk |Y=Ȳ
= − K

(k +MRS)k
,

to be substituted into (4.39). Finally, we substitute the inverse of (4.39)
together with (4.38) into the definition of the elasticity of factor substitution:

σ(K,L) ≡ MRS

k

dk

dMRS |Y=Ȳ

= −FL/FK
k

(k + FL/FK)k

K

F 3
K

[(FL)2FKK − 2FKFLFKL + (FK)2FLL]

= − FKFL(FKK + FLL)

KL [(FL)2FKK − 2FKFLFKL + (FK)2FLL]
,

which is the same as (4.28).
Under CRS, this reduces to

σ(K,L) = − FKFLF (K,L)

KL [(FL)2FKK − 2FKFLFKL + (FK)2FLL]
(from (2.52) with h = 1)

= − FKFLF (K,L)

KLFKL [−(FL)2L/K − 2FKFL − (FK)2K/L]
(from (2.58))

=
FKFLF (K,L)

FKL(FLL+ FKK)2
=

FKFL
FKLF (K,L)

, (using (2.52) with h = 1)

which proves the first part of (4.29). The second part is an implication of
rewriting the formula in terms of the production in intensive form.

E. Properties of the CES production function

The generalized CES production function is

Y = A
[
αKβ + (1− α)Lβ

] γ
β , (4.40)

where A, α, and β are parameters satisfying A > 0, 0 < α < 1, and β < 1,
β 6= 0, γ > 0. If γ < 1, there is DRS, if γ = 1, CRS, and if γ > 1, IRS.
The elasticity of substitution is always σ = 1/(1− β). Throughout below, k
means K/L.
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The limiting functional forms We claimed in the text that, for fixed
K > 0 and L > 0, (4.40) implies:

lim
β→0

Y = A(KαL1−α)γ = ALγkαγ, (*)

lim
β→−∞

Y = Amin(Kγ, Lγ) = ALγ min(kγ, 1). (**)

Proof. Let q ≡ Y/(ALγ). Then q = (αkβ + 1− α)γ/β so that

ln q =
γ ln(αkβ + 1− α)

β
≡ m(β)

β
, (4.41)

where

m′(β) =
γαkβ ln k

αkβ + 1− α =
γα ln k

α + (1− α)k−β
. (4.42)

Hence, by L’Hôpital’s rule for “0/0”,

lim
β→0

ln q = lim
β→0

m′(β)

1
= γα ln k = ln kγα,

so that limβ→0 q = kγα, which proves (*). As to (**), note that

lim
β→−∞

kβ = lim
β→−∞

1

k−β
→


0 for k > 1,
1 for k = 1,
∞ for k < 1.

Hence, by (4.41),

lim
β→−∞

ln q =

{
0 for k ≥ 1,

limβ→−∞
m′(β)

1
= γ ln k = ln kγ for k < 1,

where the result for k < 1 is based on L’Hôpital’s rule for “∞/-∞”. Conse-
quently,

lim
β→−∞

q =

{
1 for k ≥ 1,
kγ for k < 1,

which proves (**). �

Properties of the isoquants of the CES function The absolute value
of the slope of an isoquant for (4.40) in the (L,K) plane is

MRSKL =
∂Y/∂L

∂Y/∂K
=

1− α
α

k1−β →
{

0 for k → 0,
∞ for k →∞. (*)
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This holds whether β < 0 or 0 < β < 1.
Concerning the asymptotes and terminal points, if any, of the isoquant

Y = Ȳ we have from (4.40) Ȳ β/γ = A
[
αKβ + (1− α)Lβ

]
. Hence,

K =

(
Ȳ

β
γ

Aα
− 1− α

α
Lβ

) 1
β

,

L =

(
Ȳ

β
γ

A(1− α)
− α

1− αK
β

) 1
β

.

From these two equations follows, when β < 0 (i.e., 0 < σ < 1), that

K → (Aα)−
1
β Ȳ

1
γ for L→∞,

L → [A(1− α)]−
1
β Ȳ

1
γ for K →∞.

When instead β > 0 (i.e., σ > 1), the same limiting formulas obtain for
L→ 0 and K → 0, respectively.

Properties of the CES function on intensive form Given γ = 1, i.e.,
CRS, we have y ≡ Y/L = A(αkβ + 1− α)1/β from (4.40). Then

dy

dk
= A

1

β
(αkβ + 1− α)

1
β
−1αβkβ−1 = Aα

[
α + (1− α)k−β

] 1−β
β .

Hence, when β < 0 (i.e., 0 < σ < 1),

y =
A

(akβ + 1− α)−1/β
→
{

0 for k → 0,
A(1− α)1/β for k →∞.

dy

dk
=

Aα

[α + (1− α)k−β](β−1)/β
→
{
Aα1/β for k → 0,

0 for k →∞.

If instead β > 0 (i.e., σ > 1),

y →
{
A(1− α)1/β for k → 0,
∞ for k →∞.

dy

dk
→

{
∞ for k → 0,

Aα1/β for k →∞.

The output-capital ratio is y/k = A
[
α + (1− α)k−β

] 1
β and has the same

limiting values as dy/dk, when β > 0.
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Continuity at the boundary of R2
+ When 0 < β < 1, the right-hand

side of (4.40) is defined and continuous also on the boundary of R2
+. Indeed,

we get

Y = F (K,L) = A
[
αKβ + (1− α)Lβ

] γ
β →

{
Aα

γ
βKγ for L→ 0,

A(1− α)
γ
βLγ for K → 0.

When β < 0, however, the right-hand side is not defined on the boundary.
We circumvent this problem by redefining the CES function in the following
way when β < 0:

Y = F (K,L) =

{
A
[
αKβ + (1− α)Lβ

] γ
β when K > 0 and L > 0,

0 when either K or L equals 0.
(4.43)

We now show that continuity holds in the extended domain. When K > 0
and L > 0, we have

Y
β
γ = A

β
γ
[
αKβ + (1− α)Lβ

]
≡ A

β
γG(K,L). (4.44)

Let β < 0 and (K,L) → (0, 0). Then, G(K,L) → ∞, and so Y β/γ → ∞.
Since β/γ < 0, this implies Y → 0 = F (0, 0), where the equality follows from
the definition in (4.43). Next, consider a fixed L > 0 and rewrite (4.44) as

Y
1
γ = A

1
γ
[
αKβ + (1− α)Lβ

] 1
β = A

1
γL(αkβ + 1− α)

1
β

=
A

1
γL

(akβ + 1− α)−1/β
→ 0 for k → 0,

when β < 0. Since 1/γ > 0, this implies Y → 0 = F (0, L), from (4.43).
Finally, consider a fixed K > 0 and let L/K → 0. Then, by an analogue
argument we get Y → 0 = F (K, 0), (4.43). So continuity is maintained in
the extended domain.

4.9 Exercises

4.1 (the aggregate saving rate in steady state)

a) In a well-behaved Diamond OLG model let n be the rate of population
growth and k∗ the steady state capital-labor ratio (until further notice,
we ignore technological progress). Derive a formula for the long-run
aggregate net saving rate, SN/Y, in terms of n and k∗. Hint: use that
for a closed economy SN = Kt+1 −Kt.
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b) In the Solow growth model without technological change a similar rela-
tion holds, but with a different interpretation of the causality. Explain.

c) Compare your result in a) with the formula for SN/Y in steady state
one gets in any model with the same CRS-production function and no
technological change. Comment.

d) Assume that n = 0. What does the formula from a) tell you about the
level of net aggregate savings in this case? Give the intuition behind
the result in terms of the aggregate saving by any generation in two
consecutive periods. One might think that people’s rate of impatience
(in Diamond’s model the rate of time preference ρ) affect SN/Y in
steady state. Does it in this case? Why or why not?

e) Suppose there is Harrod-neutral technological progress at the constant
rate g > 0. Derive a formula for the aggregate net saving rate in the
long run in a well-behaved Diamond model in this case.

f) Answer d) with “from a)”replaced by “from e)”. Comment.

g) Consider the statement: “In Diamond’s OLG model any generation
saves as much when young as it dissaves when old.” True or false?
Why?

4.2 (increasing returns to scale and balanced growth)
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