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Uncertainty, expectations,
and asset price bubbles

This lecture note provides a framework for addressing themes where expectations

in uncertain situations are important elements. Our previous models have not taken

seriously the problem of uncertainty. Where agent’s expectations about future variables

were involved and these expectations were assumed to be model-consistent (“rational”),

we only considered a special case: perfect foresight. Shocks were treated in a peculiar

(almost self-contradictory) way: they might occur, but only as a complete surprise, a

one-off event. Agents’expectations and actions never incorporated that new shocks could

arrive.

We will now allow recurrent shocks to take place. The environment in which the

economic agents act will be considered inherently uncertain. How can this be modeled

and how can we solve the resultant models? Since it is easier to model uncertainty

in discrete rather than continuous time, we examine uncertainty and expectations in a

discrete time framework.

Our emphasis will be on the hypothesis that when facing uncertainty a dominating

fraction of the economic agents form “rational expectations”in the sense of making prob-

abilistic forecasts which coincide with the forecast calculated on the basis of the “relevant

economic model”. But we begin with simple mechanistic expectation formation hypothe-

ses that have been used to describe day-to-day expectations of people who do not think

much about the probabilistic properties of their economic environment.

1 Simple expectation formation hypotheses

One simple supposition is that expectations change gradually to correct past expectation

errors. Let Pt denote the general price level in period t and πt ≡ (Pt − Pt−1)/Pt−1

the corresponding inflation rate. Further, let πet−1,t denote the “subjective expectation”,

formed in period t− 1, of πt, i.e., the inflation rate from period t− 1 to period t.We may
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think of the “subjective expectation”as the expected value in a vaguely defined subjective

conditional probability distribution.

The hypothesis of adaptive expectations (the AE hypothesis) says that the expectation

is revised in proportion to the past expectation error,

πet−1,t = πet−2,t−1 + λ(πt−1 − πet−2,t−1), 0 < λ ≤ 1, (1)

where the parameter λ is called the adjustment speed. If λ = 1, the formula reduces to

πet−1,t = πt−1. (2)

This limiting case is known as static expectations or myopic expectations; the subjective

expectation is that the inflation rate will remain the same. As we shall see, if inflation

follows a random walk, this subjective expectation is in fact the “rational expectation”.

We may write (1) on the alternative form

πet−1,t = λπt−1 + (1− λ)πet−2,t−1. (3)

This says that the expected value concerning this period (period t) is a weighted average

of the actual value for the last period and the expected value for the last period. By

backward substitution we find

πet−1,t = λπt−1 + (1− λ)[λπt−2 + (1− λ)πet−3,t−2]

= λπt−1 + (1− λ)λπt−2 + (1− λ)2[λπt−3 + (1− λ)πet−4,t−3]

= λ
n∑
i=1

(1− λ)i−1πt−i + (1− λ)nπet−n−1,t−n.

Since (1− λ)n → 0 for n→∞, we have (for πet−n−1,t−n bounded as n→∞),

πet−1,t = λ
∞∑
i=1

(1− λ)i−1πt−i. (4)

Thus, according to the AE hypothesis with 0 < λ < 1, the expected inflation rate is a

weighted average of the historical inflation rates back in time. The weights are geomet-

rically declining with increasing time distance from the current period. The weights sum

to one (in that
∑∞

i=1 λ(1− λ)i−1 = λ(1− (1− λ))−1 = 1).

The formula (4) can be generalized to the general backward-looking expectations for-

mula,

πet−1,t =

∞∑
i=1

wiπt−1−i, where
∞∑
i=1

wi = 1. (5)
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If the weights wi in (5) satisfy wi = λ(1− λ)i−1, i = 1, 2,. . . , we get the AE formula (4).

If the weights are

w1 = 1 + β, w2 = −β, wi = 0 for i = 3, 4, . . . ,

we get

πet−1,t = (1 + β)πt−1 − βπt−2 = πt−1 + β(πt−1 − πt−2). (6)

This is called the hypothesis of extrapolative expectations and says:

if β > 0, then the recent direction of change in π is expected to continue;

if β < 0, then the recent direction of change in π is expected to be reversed;

if β = 0, then expectations are static as in (2).

As hinted, there are cases where for instance myopic expectations are “rational”(in

a sense to be defined below). Exercise 1 provides an example. But in many cases purely

backward-looking formulas are too rigid, too mechanistic. They will often lead to sys-

tematic expectation errors to one side or the other. It seems implausible that people

should not then respond to their experience and revise their expectations formula. When

expectations are about things that really matter for them, people are likely to listen to

professional forecasters who build their forecasting on statistical or econometric models.

Such models are based on a formal probabilistic framework, take the interaction between

different variables into account, and incorporate new information about future possible

events.

2 The rational expectations hypothesis

2.1 Preliminaries

We first recapitulate a few concepts from statistics. A sequence {Xt} of random variables
indexed by time is called a stochastic process. A stochastic process {Xt} is called white
noise if for all t, Xt has zero expected value, constant variance, and zero covariance across

time.1 A stochastic process {Xt} is called a first-order autoregressive process, abbreviated
AR(1), if Xt = β0 + β1Xt−1 + εt, where β0 and β1 are constants, and {εt} is white noise.

1The expression white noise derives from electrotechnics. In electrotechnical systems signals will often
be subject to noise. If this noise is arbitrary and has no dominating frequence, it looks like white light.
The various colours correspond to a certain wave length, but white light is light which has all frequences
(no dominating frequence).
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If |β1| < 1, then {Xt} is called a stationary AR(1) process. A stochastic process {Xt} is
called a random walk if Xt = Xt−1 + εt, where {εt} is white noise.

Before defining the term rational expectation, it is useful to clarify a distinction be-

tween two ways in which expectations, whatever their nature, may enter a macroeconomic

model.

2.1.1 Two model types

Type A: models with past expectations of current endogenous variables

Suppose a given macroeconomic model can be reduced to two equations, the first being

Yt = a Y e
t−1,t + c Xt, t = 0, 1, 2, ..., (7)

where Yt is some endogenous variable (not necessarily GDP ), a and c are given constant

coeffi cients, and Xt is an exogenous random variable which follows some specified stochas-

tic process. In line with the notation from Section 1, Y e
t−1,t is the subjective expectation

formed in period t−1, of the value of the variable Y in period t. The economic agents are in

simple models assumed to have the same expectations. Or, at least there is a dominating

expectation, Y e
t−1,t, in the society. What the equation (7) claims is that the endogenous

variable, Yt, depends, in the specified linear way, on the “generally held”expectation of

Yt, formed in the previous period. It is natural to think of the outcome Yt as being the

aggregate result of agents’decisions and market mechanisms, the decisions being made at

discrete points in time . . . , t−2, t−1, t, . . . , immediately after the uncertainty concerning

the period in question is resolved.

The second equation specifies how the subjective expectation is formed. To fix ideas,

let us assume myopic expectations,

Y e
t−1,t = Yt−1, (8)

as in (2) above. A solution to the model is a stochastic process for Yt such that (7) holds,

given the expectation formation (8) and the stochastic process which Xt follows.

EXAMPLE 1 (imported raw materials and the domestic price level) Let the endogenous

variable in (7) represent the domestic price level (the consumer price index) Pt, and let

Xt be the price level of imported raw materials. Suppose the price level is determined

through a markup on unit costs,

Pt = (λWt + ηXt)(1 + µ), 0 < λ <
1

1 + µ
, (*)
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whereWt is the nominal wage level in period t = 0, 1, 2, . . . , and λ and η are positive tech-

nical coeffi cients representing the assumed constant labor and raw materials requirements,

respectively, per unit of output; µ is a constant markup. Assume further that workers in

period t− 1 negotiate next period’s wage level, Wt, so as to achieve, in expected value, a

certain target real wage which we normalize to 1, i.e.,

Wt

P e
t−1,t

= 1.

Inserting into (*), we have

Pt = a P e
t−1,t + c Xt, 0 < α = λ(1 + µ) < 1, 0 < c = η(1 + µ). (9)

Suppose Xt = x̄ + εt, where x̄ is a positive constant and {εt} is white noise. Assuming
myopic expectations,

P e
t−1,t = Pt−1, (10)

the solution for the evolution of the price level is

Pt = a Pt−1 + c(x̄+ εt), t = 0, 1, 2, . . . .

Without shocks, and starting from an arbitrary P−1 > 0, the time path of the price

level would be Pt = (P−1 − P ∗)at+1 + P ∗, where P ∗ = cx̄/(1− α). Shocks to the price of

imported raw materials result in transitory deviations from P ∗. But as the shocks are only

temporary and |a| < 1, the domestic price level gradually returns towards the constant

level P ∗. The intervening changes in wage demands in response to the changes in the price

level changes prolong the time it takes to return to P ∗ in the absence of new shocks. �

Equation (7) can also be interpreted as a vector equation (such that Yt and Y e
t−1,t are

n-vectors, a is an n × n matrix, c an n × m matrix, and X an m-vector). The crucial

feature is that the endogenous variables dated t only depend on previous expectations of

date-t values of these variables and on the exogenous variables.

Models with past expectations of current endogenous variables will serve as our point

of reference when introducing the concept of rational expectations below.

Type B: models with forward-looking expectations

Another way in which agents’expectations may enter is exemplified by

Yt = a Y e
t,t+1 + c Xt, t = 0, 1, 2, .... (11)

Here Y e
t,t+1 is the subjective expectation, formed in period t, of the value of Y in period

t+1. Example: the equity price today depends on what the equity price is expected to be
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tomorrow. Or more generally: the current expectation of a future value of an endogenous

variable influences the current value of this variable. We name this the case of forward-

looking expectations. (In “everyday language”also Y e
t−1,t in model type 1 can be said to

be a forward-looking variable as seen from period t − 1. But the dividing line between

the two model types, (7) and (11), is whether current expectations of future values of the

endogenous variables do or do not influence the current values of these.)

The complete model with forward-looking expectations will include an additional equa-

tion, specifying how the subjective expectation, Y e
t,t+1, is formed. We might again impose

myopic expectations, Y e
t,t+1 = Yt. A solution to the model is a stochastic process for

Yt satisfying (11), given the stochastic process followed by Xt and given the specified

expectation formation and perhaps some additional restrictions in the form of boundary

conditions or similar. The case of forward-looking expectations is important in connection

with many topics in macroeconomics, including the evolution of asset prices and issues of

asset price bubbles. This case will be dealt with in sections 3 and 4 below.

In passing we note that in both model type 1 and model type 2, it is the mean (in the

subjective probability distribution) of the random variable(s) that enters. This is typical

of simple macroeconomic models which often ignore other measures such as the median,

mode, or higher-order moments. The latter, say the variance of Xt, may be included in

more advanced models where for instance behavior towards risk is important.

2.1.2 The concept of a model-consistent expectation

The concepts of a rational expectation andmodel-consistent expectation are closely related,

but not the same. We start with the latter.

Let there be given a stochastic model represented by (7) combined with some given

expectation formation (8), say. We put ourselves in the position of the investigator or

model builder and ask what the model-consistent expectation of the endogenous variable

Yt is as seen from period t − 1. It is the mathematical conditional expectation that can

be calculated on the basis of the model and available relevant data revealed up to and

including period t− 1. Let us denote this expectation

E(Yt|It−1), (12)

where E is the expectation operator and It−1 denotes the information available at time

t− 1. We think of period t− 1 as the half-open time interval [t− 1, t) and imagine that

the uncertainty concerning the exogenous random variable Xt−1 is resolved at time t− 1.
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So It−1 includes knowledge of Xt−1 and thereby, via the model, also of Yt−1.

The information It−1 may comprise knowledge of the realized values of X and Y up

until and including period t− 1. Instead of (12) we could, for instance, write

E(Yt|Yt−1 = yt−1, . . . , Yt−n = yt−n;Xt−1 = xt−1, . . . , Xt−n = xt−n).

Here information (some of which may be redundant) goes back to a given initial period,

say period 0, in which case n equals t. Alternatively, perhaps information goes back to

“ancient times”, possibly represented by n = ∞. Anyway, as time proceeds, in general
more and more realizations of the exogenous and endogenous variables become known

and in this sense the information It−1 expands with rising t. The information It−1 may

also be interpreted as “partial lack of uncertainty”, so that an “increasing amount of

information” and “reduced uncertainty” are seen as two sides of the same thing. The

“reduced uncertainty”lies in the fact that the space of possible time paths {(Xt, Yt)}t+Tt−n

as of time t shrinks as time proceeds (T denotes the time horizon as seen from time t).2

Indeed, this space shrinks precisely because more and more realizations of the variables

take place (more information appears) and thereby rule out an increasing subset of paths

that were earlier possible.3

In Example 1, as long as the subjective expectation is the myopic expectation (10),

the model-consistent expectation is

E(Pt|It−1) = a Pt−1 + cx̄.

Inserting the investigator’s estimated values of the coeffi cients a and c, the investigator’s

forecast of Pt is obtained.

2.2 The rational expectations hypothesis

Unsatisfied with mechanistic formulas like those of Section 1, the American economist

John F. Muth (1961) introduced a radically different approach, the hypothesis of rational

expectations. Muth stated the hypothesis the following way:

I should like to suggest that expectations, since they are informed predictions

of future events, are essentially the same as the predictions of the relevant
2By “possible”is meant “ex ante feasible according to a given model”.
3We refer to It−1 as the “available information”rather than the “information set”which is an alter-

native term used in the literature. The latter term is tricky because, as we have just exemplified, it is
ambiguous what is meant by a “larger information set”. Moreover, the term “information set”has differ-
ent meanings in different branches of economics, hence we are hesitant to use it. More about subtleties
relating to “information”in Appendix B, dealing with mathematical conditional expectations in general.
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economic theory. At the risk of confusing this purely descriptive hypothesis

with a pronouncement as to what firms ought to do, we call such expectations

’rational’(Muth 1961).

Muth applied this hypothesis to simple microeconomic problems. The hypothesis was

subsequently extended and applied to general equilibrium theory and macroeconomics by

what since the early 1970s became known as the New Classical Macroeconomics school.

Nobel laureate Robert E. Lucas from the University of Chicago lead the way by a series of

papers starting with Lucas (1972) and Lucas (1973). Assuming rational expectations in a

model instead of, for instance, adaptive expectations may radically change the dynamics

as well as the impact of economic policy.

2.2.1 The concept of rational expectations

Assuming the economic agents have rational expectations (RE) is to assume that their

subjective expectation equals the model-consistent expectation, that is, the mathematical

conditional expectation that can be calculated on the basis of the model and available

relevant information about the exogenous stochastic variables. In connection with the

model ingredient (7), assuming the agents have rational expectations thus means that

Y e
t−1,t = E(Yt|It−1), (13)

i.e., agents’subjective conditional expectation coincides with the “objective” or “true”

conditional expectation, given the model (7).

Together, the equations (7) and (13) constitute a simple rational expectations model

(henceforth an RE model). We may write the model in compact form as

Yt = aE(Yt|It−1) + c Xt, t = 0, 1, 2, .... (14)

The assumption of rational expectations thus relies on idealized conditions.

2.2.2 Solving a simple RE model

To solve the model means to find the stochastic process followed by Yt, given the sto-

chastic process followed by the exogenous variable Xt. For a linear RE model with past

expectations of current endogenous variables, the solution procedure is the following.

1. By substitution, reduce the RE model (or the relevant part of the model) into a

form like (14) expressing the endogenous variable in period t in terms of its past
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expectation and the exogenous variable(s). (The case with multiple endogenous

variables is treated similarly.)

2. Take the conditional expectation on both sides of the equation and solve for the

conditional expectation of the endogenous variable.

3. Insert into the “reduced form”attained at 1.

In practice there is often a fourth step, namely to express other endogenous variables

in the model in terms of those found in step 3. Let us see how the procedure works by

way of the following example.

EXAMPLE 2 We modify Example 1 by replacing myopic expectations by rational expec-

tations, i.e., (10) is replaced by P e
t−1,t = E(Pt|It−1). Now “available information”includes

that the subjective expectations are rational expectations. Step 1:

Pt = aE(Pt|It−1) + c Xt, 0 < α < 1, c > 0. (15)

Step 2: E(Pt|It−1) = aE(Pt|It−1) + cx̄, implying

E(Pt |It−1) = c
x̄

1− a.

Step 3: Insert into (15) to get

Pt = c
ax̄

1− a + c(x̄+ εt).

This is the solution of the model in the sense of a specification of the stochastic process

followed by Pt.

To compare with myopic expectations, suppose the event εt 6= 0 is relatively seldom

and that at t = 0, 1, ..., t0 − 1, it so happens that εt = 0, hence Pt = cx̄/(1 − a) ≡ P ∗.

Then, at t = t0, εt0 > 0, so that Pt0 = P ∗+ cεt0 > P ∗. But for t = t0 + 1, t0 + 2, ..., t0 +n

there is again a sequence of periods with εt = 0. Then, under RE, domestic price level

returns to P ∗ already in period t0 + 1.

With myopic expectations, combined with P−1 = P ∗, say, the positive shock to import

prices at t = t0 will imply Pt0 = aP ∗ + c(x̄ + εt0) = P ∗ + cεt0 , Pt0+1 = a(P ∗ + cεt) + cx̄

= P ∗ + acεt, Pt0+i = P ∗ + aicεt for i = 1, 2, ..., n. After t0 there is a systematic positive

forecast error. This is because the mechanical expectation does not consider how the

economy really functions. �
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Returning to the general form (14), without specifying the process {Xt} , the second
step gives

E(Yt |It−1) = c
E(Xt |It−1)

1− a , (16)

when a 6= 1.4 Then, in the third step we get

Yt = c
aE(Xt |It−1) + (1− a)Xt

1− a = c
Xt − a(Xt − E(Xt |It−1))

1− a . (17)

For instance, let Xt follow the process Xt = x̄ + ρXt−1 + εt, where 0 < ρ < 1 and εt
has zero expected value, given all observed past values of X and Y. Then (17) yields the

solution

Yt = c
Xt − aεt

1− a = c
x̄+ ρXt−1 + (1− a)εt

1− a , t = 0, 1, 2, ....

In Exercise 2 you are asked to solve a simple Keynesian model of this form and compare

the solution under rational expectations with the solution under static expectations.

Rational expectations should be viewed as a simplifying assumption that at best offers

an approximation. First, the assumption entails essentially that the economic agents

share one and the same understanding about how the economic system functions (and in

this chapter they also share one and the same information, It−1). This is already a big

mouthful. Second, this perception is assumed to comply with the model of the informed

economic specialist. Third, this model is supposed to be the true model of the economic

process, including the true parameter values as well as the true stochastic process which

Xt follows. Indeed, by equalizing Y e
t−1,t with the true conditional expectation, E(Yt|It−1),

and not at most some econometric estimate of this, it is presumed that agents know the

true values of the parameters a and c in the data-generating process which the model is

supposed to mimic. In practice it is not possible to attain such precise knowledge, at least

not unless the considered economic system has reached some kind of steady state and no

structural changes occur (a condition which is hardly ever satisfied in macroeconomics).

Nevertheless, a model based on the rational expectations hypothesis can in many

contexts be seen as a useful cultivation of a theoretical research question. The results

that emerge cannot be due to systematic expectation errors from the economic agents’

side. In this sense the assumption of rational expectations makes up a theoretically

interesting benchmark case.

We shall stick to the term “rational expectation”because it is standard. The term

can easily be misunderstood, however. Usually, in economists’ terminology “rational”
4If a = 1, the model (14) is inconsistent unless E(Xt |It−1)) = 0 in which case there are multiple

solutions. Indeed, for any number k ∈ (−∞, +∞), the process Yt = k + cXt solves the model when
E(Xt |It−1) = 0.
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refers to behavior based on optimization subject to the constraints faced by the agent.

So one might think that the RE hypothesis stipulates that economic agents try to get the

most out of a situation with limited information, contemplating the benefits and costs

of gathering more information and using adequate statistical estimation methods. But

this is a misunderstanding. The RE hypothesis presumes that the true model is already

known to the agents. The “rationality”refers to taking this assumed knowledge fully into

account in the chosen actions.

2.2.3 The forecast error*

Let the forecast of some variable Y one period ahead be denoted Y e
t−1,t. Suppose the

forecast is determined by some given function, f , of realizations of Y and X up to and

including period t− 1, that is, Y e
t−1,t = f(yt−1, yt−2, ..., xt−1, xt−2, ...). Such a function is

known as a forecast function. It might for instance be one of the mechanistic forecasting

principles in Section 1. At the other extreme the forecast function might, at least theo-

retically, coincide with the a model-consistent conditional expectation. In the latter case

it is a model-consistent forecast function and we can write

f(yt−1, yt−2, ..., xt−1, xt−2, ...) = E(Yt |It−1) (18)

= E(Yt |Yt−1 = yt−1, Yt−2 = yt−2, ..., xt−1 = xt−1, xt−2 = xt−2, ...) .

The forecast error is the difference between the actually occurring future value, Yt, of

a variable and the forecasted value. So, for a given forecast, Y e
t−1,t, the forecast error is

et ≡ Yt − Y e
t−1,t and is itself a stochastic variable.

If the forecast function in (18) complies with the true data-generating process (a big

“if”), then the implied forecasts would have several ideal properties:

(a) the forecast error would have zero mean;

(b) the forecast error would be uncorrelated with any of the variables in the information

It−1 and therefore also with its own past values; and

(c) the expected squared forecast error would be minimized.

To see these properties, note that the model-consistent forecast error is et = Yt −
E(Yt |It−1) . From this follows that E(et |It−1) = 0, cf. (a). Also the unconditional expec-

tation is nil, i.e., E(et) = 0. This is because E(E(et |It−1)) = E(0) = 0 at the same time as
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E(E(et |It−1)) = E(et), by the law of iterated expectations from statistics saying that the

unconditional expectation of the conditional expectation of a stochastic variable Z is given

by the unconditional expectation of Z, cf. Appendix B. Considering the specific model

(7), the model-consistent-forecast error is et = Yt − E(Yt |It−1) = c(Xt − E(Xt |It−1)), by

(16) and (17). An ex post error (et 6= 0) thus emerges if and only if the realization of the

exogenous variable deviates from its conditional expectation as seen from the previous

period.

As to property (b), for i = 1, 2, ..., let st−i be some variable value belonging to the

information It−i. Then, property (b) is the claim that the (unconditional) covariance

between et and st−i is zero, i.e., Cov(etst−i) = 0, for i = 1, 2, .... This follows from the

orthogonality property of model-consistent expectations (see Appendix C). In particular,

with st−i = et−i, we get Cov(etet−i) = 0, i.e., the forecast errors exhibit lack of serial

correlation. If the covariance were not zero, it would be possible to improve the forecast

by incorporating the correlation into the forecast. In other words, under the assumption of

rational expectations economic agents have no more to learn from past forecast errors. As

remarked above, the RE hypothesis precisely refers to a fictional situation where learning

has been completed and underlying mechanisms do not change.

Finally, a desirable property of a forecast function f(·) is that it maximizes “accuracy”,
i.e., minimizes an appropriate loss function. A popular loss function, L, in this context is

the expected squared forecast error conditional on the information It−1,

L = E((Yt − f(yt−1, yt−2, ..., xt−1, xt−2, ...))
2 |It−1) .

Assuming Yt, Yt−1, ..., Xt−1, Xt−2, ... are jointly normally distributed, then the solution to

the problem of minimizing L is to set f(·) equal to the conditional expectation E(Yt |It−1)

based on the data-generating model as in (18).5 This is what property (c) refers to.

EXAMPLE 3 Let Yt = aE(Yt |It−1) + cXt, with Xt = x̄ + εt, where x̄ is a constant and

εt is white noise with variance σ2. Then (17) applies, so that

Yt =
cx̄

1− a + cεt, t = 0, 1, ...,

with variance c2σ2. The model-consistent forecast error is et = Yt−E(Yt |It−1) = cεt with

conditional expectation equal to E(cεt |It−1) = 0. This forecast error itself is white noise

and is therefore uncorrelated with the information on which the forecast is based. �
5For proof, see Pesaran (1987). Under the restriction of only linear forecast functions, property (c)

holds even without the joint normality assumption, see Sargent (1979).
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It is worth emphasizing that the “true” conditional expectation usually can not be

known − neither to the economic agents nor to the investigator. At best there can be a
reasonable estimate, probably somewhat different across the agents because of differences

in information and conceptions of how the economic system functions. A deeper model of

expectations would give an account of the mechanisms through which agents learn about

the economic environment. An important ingredient here would be how agents contem-

plate the costs and potential gains associated with further information search needed

to reduce systematic expectation errors where possible. This contemplation is intricate

because information search often means entering unknown territory. Moreover, for a sig-

nificant subset of the agents the costs may be prohibitive. A further complicating factor

involved in learning is that when the agents have obtained some knowledge about the

statistical properties of the economic variables, the resulting behavior of the agents may

change these statistical properties. The rational expectations hypothesis sets these prob-

lems aside. It is simply assumed that the structure of the economy remains unchanged

and that the learning process has been completed.

2.2.4 Perfect foresight as a special case

The notion of perfect foresight corresponds to the limiting case where the variance of the

exogenous variable(s) is zero so that with probability one, Xt = E(Xt |It−1) for all t. Then

we have a non-stochastic model where rational expectations imply that agents’ex post

forecast error with respect to Yt is zero.6 To put it differently: rational expectations in a

non-stochastic model is equivalent to perfect foresight. Note, however, that perfect fore-

sight necessitates the exogenous variableXt to be known in advance. Real-world situations

are usually not like that. If we want our model to take this into account, the model ought

to be formulated in an explicit stochastic framework. And assumptions should be stated

about how the economic agents respond to the uncertainty. The rational expectations as-

sumption is one approach to the problem and has been much applied in macroeconomics

in recent decades, perhaps due to lack of compelling tractable alternatives.

3 Models with rational forward-looking expectations

We here turn to models where current expectations of a future value of an endogenous

variable have an influence on the current value of this variable, that is, the case exemplified

6Here we disregard zero probability events.
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by equation (11). At the same time we introduce two simplifications in the notation. First,

instead of using capital letters to denote the stochastic variables (as we did above and is

common in mathematical statistics), we follow the tradition in macroeconomics to often

use lower case letters. So a lower case letter may from now on represent a stochastic

variable or a specific value of this variable, depending on the context.

An equation like (11) will now read yt = a yet,t+1 + c xt. Under rational expectations

it takes the form yt = aE(yt+1 |It) + c xt, t = 0, 1, 2, . . . . Second, from now on we write

this equation as

yt = aEtyt+1 + c xt, . . . t = 0, 1, 2, . . . , a 6= 0. (19)

That is, the expected value of a stochastic variable, zt+i, conditional on the information

It, will be denoted Etzt+i.

A stochastic difference equation of the form (19) is called a linear expectation difference

equation of first order with constant coeffi cient a.7 A solution is a specified stochastic

process {yt} which satisfies (19), given the stochastic process followed by xt. In the

economic applications usually no initial value, y0, is given. On the contrary, the interpre-

tation is that yt depends, for all t, on expectations about the future.8 So yt is considered

a jump variable that can immediately shift its value in response to the emergence of new

information about the future x’s. For example, a share price may immediately jump to a

new value when the accounts of the firm become publicly known (often even before, due

to sudden rumors).

Due to the lack of an initial condition for yt, there can easily be infinitely many

processes for yt satisfying our expectation difference equation. We have an infinite forward-

looking “regress”, where a variable’s value today depends on its expected value tomorrow,

this value depending on the expected value the day after tomorrow and so on. Then usu-

ally there are infinitely many expected sequences which can be self-fulfilling in the sense

that if only the agents expect a particular sequence, then the aggregate outcome of their

behavior will be that the sequence is realized. It “bites its own tail”so to speak. Yet, when

an equation like (19) is part of a larger model, there will often (but not always) be con-

ditions that allow us to select one of the many solutions to (19) as the only economically

relevant one. For example, an economy-wide transversality condition or another general

7To keep things simple, we let the coeffi cients a and c be constants, but a generalization to time-
dependent coeffi cients is straightforward.

8The reason we say “depends on” is that it would be inaccurate to say that yt is determined (in a
one-way-sense) by expectations about the future. Rather there is mutual dependence. In view of yt being
an element in the information It, the expectation of yt+1 in (19) may depend on yt just as much as yt
depends on the expectation of yt+1.
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equilibrium condition may rule out divergent solutions and leave a unique convergent

solution as the final solution.

We assume a 6= 0, since otherwise (19) itself is already the unique solution. It turns

out that the set of solutions to (19) takes a different form depending on whether |a| < 1

or |a| > 1:

The case |a| < 1. In general, there is a unique fundamental solution and infinitely many

explosive solutions (“bubble solutions”).

The case |a| > 1. In general, there is no fundamental solution but infinitely many non-

explosive solutions. (The case |a| = 1 resembles this.)

In the case |a| < 1, the expected future has modest influence on the present. Here we

will concentrate on this case, since it is the case most frequently appearing in macroeco-

nomic models with rational expectations.

4 Solutions when |a| < 1

Various solution methods are available. Repeated forward substitution is the most easily

understood method.

4.1 Repeated forward substitution

Repeated forward substitution consists of the following steps. We first shift (19) one

period ahead:

yt+1 = a Et+1yt+2 + c xt+1.

Then we take the conditional expectation on both sides to get

Etyt+1 = a Et(Et+1yt+2) + c Etxt+1 = a Etyt+2 + c Etxt+1, (20)

where the second equality sign is due to the law of iterated expectations, which says that

Et(Et+1yt+2) = Etyt+2. (21)

see Box 1. Inserting (20) into (19) then gives

yt = a2Etyt+2 + ac Etxt+1 + c xt. (22)
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The procedure is repeated by forwarding (19) two periods ahead; then taking the condi-

tional expectation and inserting into (22), we get

yt = a3Etyt+3 + a2c Etxt+2 + ac Etxt+1 + c xt.

We continue in this way and the general form (for n = 0, 1, 2, ...) becomes

yt+n = a Et+n(yt+n+1) + c xt+n,

Etyt+n = a Etyt+n+1 + c Etxt+n,

yt = an+1Etyt+n+1 + cxt + c

n∑
i=1

aiEtxt+i. (23)

Box 1. The law of iterated expectations

The method of repeated forward substitution is based on the law of iterated expecta-
tions which says that Et(Et+1yt+2) = Etyt+2, as in (21). The logic is the fol-
lowing. Events in period t+ 1 are stochastic as seen from period t and so Et+1yt+2

(the expectation conditional on these events) is a stochastic variable. Then the law
of iterated expectations says that the conditional expectation of this stochastic variable
as seen from period t is the same as the conditional expectation of yt+2 itself as seen
from period t. So, given that expectations are rational, then an earlier expectation of
a later expectation of y is just the earlier expectation of y. Put differently: my best
forecast today of how I am going to forecast tomorrow a share price the day after
tomorrow, will be the same as my best forecast today of the share price the day after
tomorrow. If beforehand we have good reasons to expect that we will revise our
expectations upward, say, when next period’s additional information arrives, the
original expectation would be biased, hence not rational.9

4.2 The fundamental solution

PROPOSITION 1 Consider the expectation difference equation (19), where a 6= 0. If

lim
n→∞

n∑
i=1

aiEtxt+i exists, (24)

then

yt = c

∞∑
i=0

aiEtxt+i = cxt + c

∞∑
i=1

aiEtxt+i ≡ y∗t , t = 0, 1, 2, ..., (25)

is a solution to the equation.

9A formal account of conditional expectations and the law of iterated expectations is given in Appendix
B.
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Proof Assume (24). Then the formula (25) is meaningful. In view of (23), it satisfies

(19) if and only if limn→∞ a
n+1Etyt+n+1 = 0. Hence, it is enough to show that the process

(25) satisfies this latter condition.

In (25), replace t by t+ n+ 1 to get yt+n+1 = c
∑∞

i=0 a
iEt+n+1xt+n+1+i. Using the law

of iterated expectations, this yields

Etyt+n+1 = c

∞∑
i=0

aiEtxt+n+1+i so that

an+1Etyt+n+1 = c an+1

∞∑
i=0

aiEtxt+n+1+i = c

∞∑
j=n+1

ajEtxt+j.

It remains to show that limn→∞
∑∞

j=n+1 a
jEtxt+j = 0. From the identity

∞∑
j=1

ajEtxt+j =
n∑
j=1

ajEtxt+j +
∞∑

j=n+1

ajEtxt+j

follows
∞∑

j=n+1

ajEtxt+j =
∞∑
j=1

ajEtxt+j −
n∑
j=1

ajEtxt+j.

Letting n→∞, this gives

lim
n→∞

∞∑
j=n+1

ajEtxt+j =
∞∑
j=1

ajEtxt+j −
∞∑
j=1

ajEtxt+j = 0,

which was to be proved. �

The solution (25) is called the fundamental solution of (19), often marked by an

asterisk ∗. The fundamental solution is (for c 6= 0) defined only when the condition (24)

holds. In general this condition requires that |a| < 1. In addition, (24) requires that the

absolute value of the expectation of the exogenous variable does not increase “too fast”.

More precisely, the requirement is that |Etxt+i|, when i → ∞, has a growth factor less
than |a|−1 . As an example, let 0 < a < 1 and g > 0, and suppose that Etxt+i > 0 for i

= 0, 1, 2, ..., and that 1 + g is an upper bound for the growth factor of Etxt+i. Then

Etxt+i ≤ (1 + g)Etxt+i−1 ≤ (1 + g)iEtxt = (1 + g)ixt.

Multiplying by ai, we get aiEtxt+i ≤ ai(1 + g)ixt. By summing from i = 1 to n,

n∑
i=1

aiEtxt+i ≤ xt

n∑
i=1

[a(1 + g)]i .
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Letting n→∞, we get

lim
n→∞

n∑
i=1

aiEtxt+i ≤ xt lim
n→∞

n∑
i=1

[a(1 + g)]i = xt
a(1 + g)

1− a(1 + g)
<∞,

if 1 + g < a−1, using the sum rule for an infinite geometric series.

As noted in the proof of Proposition 1, the fundamental solution, (25), has the property

that

lim
n→∞

anEtyt+n = 0. (26)

That is, the expected value of y is not “explosive”: its absolute value has a growth factor

less than |a|−1. Given |a| < 1, the fundamental solution is the only solution of (19) with

this property. Indeed, it is seen from (23) that whenever (26) holds, (25) must also hold.

In Example 1 below, yt is interpreted as the market price of a share and xt as dividends.

Then the fundamental solution gives the share price as the present value of the expected

future flow of dividends.

EXAMPLE 1 (the fundamental value of an equity share) Consider arbitrage between

shares of stock and a riskless asset paying the constant rate of return r > 0. Let period t

be the current period. Let pt+i be the market price (in real terms, say) of the share at the

beginning of period t + i and dt+i the dividend paid out at the end of that period, t + i,

i = 0, 1, 2, .... As seen from period t there is uncertainty about pt+i and dt+i for i = 1, 2, ....

An investor who buys nt shares at time t (the beginning of period t) thus invests Vt ≡ ptnt

units of account at time t. At the end of the period the gross return comes out as the

known dividend dtnt and the potential sales value of the shares at the beginning of next

period. This is unlike standard accounting and finance notation in discrete time, where

Vt would be the end-of-period-t market value of the stock of shares that begins to yield

dividends in period t+ 1.10

Suppose investors have rational expectations and care only about expected return.

10Our use of pt for the (real) price of a share bought at the beginning of period t is not inconsistent
with our use, in earlier chapters, of Pt to denote the nominal price per unit of consumption in period
t, but paid for at the end of the period. At the beginning of period t, after the uncertainty pertaining
to period t has been resolved and available information thereby been updated, a consumer-investor will
decide both the investment and the consumption flow for the period. But only the investment expence,
pt, is disbursed immediately.
It is convenient to think of the course of actions such that receipt of the previous period’s dividend,

dt−1, and payment for that period’s consumption, at the price Pt−1, occur right before period t begins
and the new information arrives. Indeed, the resolution of uncertainty at discrete points in time motivates
a distinction between “end of”period t− 1 and “beginning of”period t, where the new information has
just arrived.

18



Then the no-arbitrage condition reads

dt + Etpt+1 − pt
pt

= r > 0. (27)

This can be written

pt =
1

1 + r
Etpt+1 +

1

1 + r
dt, (28)

which is of the same form as (19) with a = c = 1/(1 + r) ∈ (0, 1). Assuming dividends do

not grow “too fast”, we find the fundamental solution, denoted p∗t , as

p∗t =
1

1 + r
dt +

1

1 + r

∞∑
i=1

1

(1 + r)i
Etdt+i =

∞∑
i=0

1

(1 + r)i+1
Etdt+i. (29)

The fundamental solution is simply the present value of expected future dividends.

If the dividend process is dt+1 = dt+ εt+1, where εt+1 is white noise, then the dividend

process is known as a random walk and Etdt+i = dt for i = 1, 2, ... . Thus p∗t = dt/r, by

the sum rule for an infinite geometric series. In this case the fundamental value is thus

itself a random walk. More generally, the dividend process could be a martingale, that is,

a sequence of stochastic variables with the property that the expected value next period

exists and equals the current actual value, i.e., Etdt+1 = dt; but in a martingale, εt+1

≡ dt+1 − dt need not be white noise; it is enough that Etεt+1 = 0.11 Given the constant

required return r, we still have p∗t = dt/r. So the fundamental value itself is in this case a

martingale. �

In finance theory the present value of the expected future flow of dividends on an

equity share is referred to as the fundamental value of the share. It is by analogy with

this that the general designation fundamental solution has been introduced for solutions

of form (25). We could also think of pt as the market price of a house rented out and

dt as the rent. Or pt could be the market price of an oil well and dt the revenue (net of

extraction costs) from the extracted oil in period t.

4.3 Bubble solutions

Other than the fundamental solution, the expectation difference equation (19) has infi-

nitely many bubble solutions. In view of |a| < 1, these are characterized by violating the

condition (26). That is, they are solutions whose expected value explodes over time.

11A random walk is thus a special case of a martingale.
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It is convenient to first consider the homogenous expectation equation associated with

(19). This is defined as the equation emerging when setting c = 0 in (19):

yt = aEtyt+1. (30)

Every stochastic process {bt} of the form

bt+1 = a−1bt + ut+1, where Etut+1 = 0, (31)

has the property that

bt = aEtbt+1, (32)

and is thus a solution to (30). The “disturbance”ut+1 represents “new information”which

may be related to movements in “fundamentals”, xt+1. But it does not have to. In fact,

ut+1 may be related to conditions that per se have no economic relevance whatsoever.

For ease of notation, from now on we just write bt even if we think of the whole process

{bt} rather than the value taken by b in the specific period t. The meaning should be clear
from the context. A solution to (30) is referred to as a homogenous solution associated

with (19). Let bt be a given homogenous solution and let K be an arbitrary constant.

Then Bt = Kbt is also a homogenous solution (try it out for yourself). Conversely, any

homogenous solution bt associated with (19) can be written in the form (31). To see this,

let bt be a given homogenous solution, that is, bt = aEtbt+1. Let ut+1 = bt+1 − Etbt+1.

Then

bt+1 = Etbt+1 + ut+1 = a−1bt + ut+1,

where Etut+1 = Etbt+1 − Etbt+1 = 0. Thus, bt is of the form (31).

For convenience we here repeat our original expectation difference equation (19) and

name it (*):

yt = aEtyt+1 + c xt, . . . t = 0, 1, 2, . . . , a 6= 0. (*)

PROPOSITION 2 Consider the expectation difference equation (*), where a 6= 0. Let ỹt
be a particular solution to the equation. Then:

(i) every stochastic process of the form

yt = ỹt + bt, (33)

where bt satisfies (31), is a solution to (*);

(ii) every solution to (*) can be written in the form (33) with bt being an appropriately

chosen homogenous solution associated with (*).
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Proof. Let some particular solution ỹt be given. (i) Consider yt = ỹt+bt, where bt satisfies

(31). Since ỹt satisfies (*), we have yt = a Etỹt+1 + c xt + bt. Consequently, by (30),

yt = a Etỹt+1 + c xt + a Etbt+1 = a Et(ỹt+1 + bt+1) + c xt = a Etyt+1 + c xt,

saying that (33) satisfies (*). (ii) Let Yt be an arbitrary solution to (*). Define bt = Yt− ỹt.
Then we have

bt = Yt − ỹt = aEtYt+1 + cxt − (aEtỹt+1 + cxt)

= aEt(Yt+1 − ỹt+1) = aEtbt+1,

where the second equality follows from the fact that both Yt and ỹt are solutions to (*).

This shows that bt is a solution to the homogenous equation (30) associated with (*).

Since Yt = ỹt + bt, the proposition is hereby proved. �

Proposition 2 holds for any a 6= 0. In case the fundamental solution (25) exists and

|a| < 1, it is convenient to choose this solution as the particular solution in (33). Thus,

referring to the right-hand side of (25) as y∗t , we can use the particular form,

yt = y∗t + bt. (34)

When the component bt is different from zero, the solution (34) is called a bubble

solution and bt is called the bubble component. In the typical economic interpretation the

bubble component shows up only because it is expected to show up next period, cf. (32).

The name bubble springs from the fact that the expected value of bt, conditional on the

information available in period t, explodes over time when |a| < 1. To see this, as an

example, let 0 < a < 1. Then, from (30), by repeated forward substitution we get

bt = a Et(aEt+1bt+2) = a2Etbt+2 = ... = aiEtbt+i, i = 1, 2, ....

It follows that Etbt+i = a−ibt, and from this follows that the bubble, for t going to infinity,

is unbounded in expected value:

lim
i→∞

Etbt+i =

{
∞, if bt > 0

−∞, if bt < 0
. (35)

Indeed, the absolute value of Etbt+i will for rising i grow geometrically towards infinity

with a growth factor equal to 1/a > 1.

Let us consider a special case of (*) that allows a simple graphical illustration of both

the fundamental solution and some bubble solutions.
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Figure 1: Deterministic bubbles (the case 0 < a < 1, c > 0, and xt = x̄).

4.3.1 When xt has constant mean

Suppose the stochastic process xt (the “fundamentals”) takes the form xt = x̄+ εt, where

x̄ is a constant and εt is white noise. Then

yt = a Etyt+1 + c(x̄+ εt), 0 < |a| < 1. (36)

The fundamental solution is

y∗t = c xt + c
∞∑
i=1

aix̄ = cx̄+ cεt + c
ax̄

1− a =
cx̄

1− a + cεt.

Referring to (i) of Proposition 2,

yt =
cx̄

1− a + cεt + bt (37)

is thus also a solution of (36) if bt is of the form (31).

It may be instructive to consider the case where all stochastic features are eliminated.

So we assume ut ≡ εt ≡ 0. Then we have a model with perfect foresight; the solution (37)

simplifies to

yt =
cx̄

1− a + b0a
−t, (38)

where we have used repeated backward substitution in (31). By setting t = 0 we see that

y0 − cx̄
1−a = b0. Inserting this into (38) gives

yt =
cx̄

1− a + (y0 −
cx̄

1− a)a−t. (39)

In Fig. 1 we have drawn three trajectories for the case 0 < a < 1, c > 0. Trajectory

I has y0 = cx̄/(1 − a) and represents the fundamental solution. Trajectory II, with y0

> cx̄/(1−a), and trajectory III, with y0 < cx̄/(1−a), are bubble solutions. Since we have
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imposed no boundary condition apriori, one y0 is as good as any other. The interpretation

is that there are infinitely many trajectories with the property that if only the economic

agents expect the economy will follow that particular trajectory, the aggregate outcome of

their behavior will be that this trajectory is realized. This is the potential indeterminacy

arising when yt is not a predetermined variable. However, as alluded to above, in a

complete economic model there will often be restrictions on the endogenous variable(s)

not visible in the basic expectation difference equation(s), here (36). It may be that

the economic meaning of yt precludes negative values (a share certificate would be an

example). In that case no-one can rationally expect a path such as III in Fig. 1. Or

perhaps, for some reason, there is an upper bound on yt (think of the full-employment

ceiling for output in a situation where the “natural”growth factor for output is smaller

than a−1). Then no one can rationally expect a trajectory like II in the figure.

To sum up: in order for a solution of a first-order linear expectation difference equation

with constant coeffi cient a, where |a| < 1, to differ from the fundamental solution, the

solution must have the form (34) where bt has the form described in (31). This provides

a clue as to what asset price bubbles might look like.

4.3.2 Asset price bubbles

A stylized fact of stock markets is that stock price indices are quite volatile on a month-to-

month, year-to-year, and especially decade-to-decade scale, cf. Fig. 2. There are different

views about how these swings should be understood. According to the Effi cient Market

Hypothesis the swings just reflect unpredictable changes in the “fundamentals”, that is,

changes in the present value of rationally expected future dividends. This is for instance

the view of Nobel laureate Eugene Fama (1970, 2003) from University of Chicago.

In contrast, Nobel laureate Robert Shiller (1981, 2003, 2005) from Yale University,

and others, have pointed to the phenomenon of “excess volatility”. The view is that asset

prices tend to fluctuate more than can be rationalized by shifts in information about

fundamentals (present values of dividends). Although in no way a verification, graphs

like those in Fig. 2 and Fig. 3 are suggestive. Fig. 2 shows the monthly real Standard

and Poors (S&P) composite stock prices and real S&P composite earnings for the period

1871-2008. The unusually large increase in real stock prices since the mid-90’s, which

ended with the collapse in 2000, is known as the “dot-com bubble”. Fig. 3 shows, on a

monthly basis, the ratio of real S&P stock prices to an average of the previous ten years’

real S&P earnings along with the long-term real interest rate. It is seen that this ratio
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Figure 2: Monthly real S&P composite stock prices from January 1871 to January 2008 (left)
and monthly real S&P composite earnings from January 1871 to September 2007 (right). Source:
http://www.econ.yale.edu/~shiller/data.htm.

reached an all-time high in 2000, by many observers considered as “the year the dot-com

bubble burst”.

Shiller’s interpretation of the large stock market swings is that they are due to fads,

herding, and shifts in fashions and “animal spirits” (the latter being a notion from

Keynes).

A third possible source of large stock market swings was pointed out by Blanchard

(1979) and Blanchard and Watson (1982). They argued that bubble phenomena need not

be due to irrational behavior and non-rational expectations. This lead to the theory of

rational bubbles − the idea that excess volatility can be explained as speculative bubbles
arising from self-fulfilling rational expectations.

Consider an asset which yields either dividends or services in production or consump-

tion in every period in the future. The fundamental value of the asset is, at the theoretical

level, defined as the present value of the expected future flow of dividends or services.12

An asset price bubble is then defined as a systematic positive deviation of the market

12In practice there are many ambiguities involved in this definition of the fundamental value because
it relates to a future which is often essentially unknown.
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Figure 3: S&P price-earnings ratio and long-term real interest rates from January 1881
to January 2008. The earnings are calculated as a moving average over the preceding
ten years. The long-term real interest rate is the 10-year Treasury rate from 1953 and
government bond yields from Sidney Homer, “A History of Interest Rates” from before
1953. Source: http://www.econ.yale.edu/~shiller/data.htm.

price, pt, of the asset from its fundamental value, p∗t :

pt = p∗t + bt. (40)

An asset price bubble, pt− p∗t , that emerges in a setting where the no-arbitrage condition
(27) holds under rational expectations, is called a rational bubble. It emerges only because

there is in the market a self-fulfilling belief that it will appreciate at a rate high enough

to warrant the overcharge involved.

EXAMPLE 2 (an ever-expanding rational bubble) Consider again an equity share for

which the no-arbitrage condition is

dt + Etpt+1 − pt
pt

= r > 0. (41)

As in Example 1, the implied expectation difference equation is pt = aEtpt+1 + cdt, with

a = c = 1/(1 + r) ∈ (0, 1). Let the price of the share at time t be pt = p∗t + bt, where

p∗t is the fundamental value and bt > 0 a bubble component following the deterministic

process, bt+1 = (1 + r)bt, b0 > 0, so that bt = b0(1 + r)t. This is called a deterministic

rational bubble. The sum p∗t + bt will satisfy the no-arbitrage condition (41) just as much
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as p∗t itself, because we just add something which equals the discounted value of itself one

period later.

Agents may be ready to pay a price over and above the fundamental value (whether or

not they know the “true”fundamental value) if they expect they can sell at a suffi ciently

higher price later; trading with such motivation is called speculative behavior. If generally

held and lasting for some time, this expectation may be self-fulfilling. Note that (41)

implies that the asset price ultimately grows at the rate r. Indeed, let dt = d0(1 + γ)t,

γ < r (if r ≤ γ, the asset price would be infinite). By the rule of the sum of an infinite

geometric series, we then have p∗t = dt/(r−γ), showing that the fundamental value grows

at the rate γ. Consequently, pt/bt = (p∗t + bt)/bt = p∗t/bt + 1 → 1, as γ < r. It follows that

the asset price in the long run grows at the same rate as the bubble, the rate r.

We are not acquainted with ever-expanding incidents of that caliber in real world

situations, however. A deterministic rational bubble thus appears implausible. �

In some contexts it may not matter whether or not we think of the “rational”market

participants as actually knowing the probability distribution of the “fundamentals”, hence

knowing p∗t (by “fundamentals”is meant any information relating to the future dividend

or service capacity of an asset: a firm’s technology, resources, market conditions etc.). All

the same, it seems common to imply such a high level of information in the term “rational

bubbles”. Unless otherwise indicated, we shall let this implication be understood.

While a deterministic rational bubble was found implausible, let us now consider an

example of a stochastic rational bubble which sooner or later bursts.

EXAMPLE 3 (a bursting bubble) Once again we consider the no-arbitrage condition is

(41) where for simplicity we still assume the required rate of return is constant, though

possibly including a risk premium. Following Blanchard (1979), we assume that the

market price, pt, of the share contains a stochastic bubble of the following form:

bt+1 =

{
1+r
qt
bt with probability qt,

0 with probability 1− qt,
(42)

where t = 0, 1, 2, ... and b0 > 0. In addition we may assume that qt = f(p∗t , bt), fp∗ ≥ 0,

fb ≤ 0. If fp∗ > 0, the probability that the bubble persists at least one period ahead is

higher the greater the fundamental value has become. If fb < 0, the probability that

the bubble persists at least one period ahead is less, the greater the bubble has already

become. In this way the probability of a crash becomes greater and greater as the share

price comes further and further away from fundamentals. As a compensation, the longer
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time the bubble has lasted, the higher is the expected growth rate of the bubble in the

absence of a collapse.

This bubble satisfies the criterion for a rational bubble. Indeed, (42) implies

Et bt+1 = (
1 + r

qt+1

bt)qt+1 + 0 · (1− qt+1) = (1 + r)bt.

This is of the form (31) with a−1 = 1 + r, and the bubble is therefore a stochastic

rational bubble. The stochastic component is ut+1 = bt+1 − Etbt+1 = bt+1 − (1 + r)bt

and has conditional expectation equal to zero. Although ut+1 must have zero conditional

expectation, it need not be white noise (it can for instance have varying variance). �

As this example illustrates, a stochastic rational bubble does not have the implausible

ever-expanding form of a deterministic rational bubble. Yet, under certain conditions

even stochastic rational bubbles can be ruled out or at least be judged implausible. The

next section reviews some cases.

4.4 When rational bubbles in asset prices can or can not be
ruled out

We concentrate on assets whose services are valued independently of the price.13 Let pt
be the market price and p∗t the fundamental value of the asset as of time t. Even if the

asset yields services rather than dividends, we think of p∗t as in principle the same for all

agents. This is because a user who, in a given period, values the service flow of the asset

relatively low can hire it out to the one who values it highest (the one with the highest

willingness to pay). Until further notice we assume p∗t known to the market participants.

4.4.1 Partial equilibrium arguments

The principle of reasoning to be used is called backward induction: If we know something

about an asset price in the future, we can conclude something about the asset price today.

(a) Assets which can be freely disposed of (“free disposal”) Can a rational asset

price bubble be negative? The answer is no. The logic can be illustrated on the basis

of Example 2 above. For simplicity, let the dividend be the same constant d > 0 for all

t = 0, 1, 2, .... Then, from the formula (39) we have

pt − p∗ = (p0 − p∗)(1 + r)t,

13This is in contrast to assets that serve as means of payment.
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where r > 0 and p∗ = d/r. Suppose there is a negative bubble in period 0, i.e., p0−p∗ < 0.

In period 1, since 1 + r > 1, the bubble is greater in absolute value. The downward

movement of pt continues and sooner or later pt is negative. The intuition is that the

low p0 in period 0 implies a high dividend-price ratio. Hence a negative capital gain

(pt+1 − pt < 0) is needed for the no-arbitrage condition (41) to hold. Thereby p1 < p0,

and so on.

But in a market with self-interested rational agents, an object which can be freely

disposed of can never have a negative price. A negative price means that the “seller”

has to pay to dispose of the object. Nobody will do that if the object can just be

thrown away. An asset which can be freely disposed of (share certificates for instance)

can therefore never have a negative price. We conclude that a negative rational bubble

can not be consistent with rational expectations. Similarly, with a stochastic dividend,

a negative rational bubble would imply that in expected value the share price becomes

negative at some point in time, cf. (35). Again, rational expectations rule this out.

Hence, if we imagine that for a short moment pt < p∗t , then everyone will want to buy

the asset and hold it forever, which by own use or by hiring out will imply a discounted

value equal to p∗t . There is thus excess demand until pt has risen to p
∗
t .

When a negative rational bubble can be ruled out, then, if at the first date of trading

of the asset there were no positive bubble, neither can a positive bubble arise later. Let

us make this precise:

PROPOSITION 3 Assume free disposal of a given asset. Then, if a rational bubble in the

asset price is present today, it must be positive and must have been present also yesterday

and so on back to the first date of trading the asset. And if a rational bubble bursts, it

will not restart later.

Proof As argued above, in view of free disposal, a negative rational bubble in the asset

price can be ruled out. It follows that bt = pt − p∗t ≥ 0 for t = 0, 1, 2, ..., where t = 0 is

the first date of trading the asset. That is, any rational bubble in the asset price must be

a positive bubble. We now show by contradiction that if, for an arbitrary t = 1, 2, ..., it

holds that bt > 0, then bt−1 > 0. Let bt > 0. Then, if bt−1 = 0, we have Et−1bt = Et−1ut

= 0 (from (31) with t replaced by t−1), implying, since bt < 0 is not possible, that bt = 0

with probability one as seen from period t−1. Ignoring zero probability events, this rules

out bt > 0 and we have arrived at a contradiction. Thus bt−1 > 0. Replacing t by t − 1

and so on backward in time, we end up with b0 > 0. This reasoning also implies that if
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a bubble bursts in period t, it can not restart in period t + 1, nor, by extension, in any

subsequent period. �

This proposition (due to Diba and Grossman, 1988) claims that a rational bubble in

an asset price must have been there since trading of the asset began. Yet such a conclusion

is not without ambiguities. If new information about radically new technology comes up

at some point in time, is a share in the firm then the same asset as before? In a legal

sense the firm is the same, but is the asset also the same? Even if an earlier bubble has

crashed, cannot a new rational bubble arise later in case of an utterly new situation?

These ambiguities reflect the diffi culty involved in the concepts of rational expectations

and rational bubbles when we are dealing with uncertainties about future developments of

the economy. The market’s evaluation of many assets of macroeconomic importance, not

the least shares in firms, depends on vague beliefs about future preferences, technologies,

and societal circumstances. The fundamental value can not be determined in any objective

way. There is no well-defined probability distribution over the potential future outcomes.

Fundamental uncertainty, also called Knightian uncertainty,14 is present.

(b) Bonds with finite maturity The finite maturity ensures that the value of the bond

is given at some finite future date. Therefore, if there were a positive bubble in the market

price of the bond, no rational investor would buy just before that date. Anticipating this,

no one would buy the date before, and so on. Consequently, nobody will buy in the first

place. By this backward-induction argument follows that a positive bubble cannot get

started. And since there also is “free disposal”, all rational bubbles can be precluded.

From now on we take as given that negative rational bubbles are ruled out. So, the

discussion is about whether positive rational asset price bubbles may exist or not.

(c) Assets whose supply is elastic Real capital goods (including buildings) can be

reproduced and have clearly defined costs of reproduction. This precludes rational bubbles

on this kind of assets, since a potential buyer can avoid the overcharge by producing

instead. Notice, however, that building sites with a specific amenity value and apartments

in attractive quarters of a city are not easily reproducible. Therefore, rational bubbles on

such assets are more diffi cult to rule out.
14After the Chicago of University economist Frank Knight who in his book, Risk, Uncertainty, and

Profit (1921), coined the important distinction between measurable risk and unmeasurable uncertainty.
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Here are a few intuitive remarks about bubbles on shares of stock in an established

firm. An argument against a rational bubble might be that if there were a bubble, the

firm would tend to exploit it by issuing more shares. But thereby market participants

mistrust is raised and may pull market evaluation back to the fundamental value. On

the other hand, the firm might anticipate this adverse response from the market. So the

firm chooses instead to “fool”the market by steady financing behavior, calmly enjoying

its solid equity and continuing as if no bubble were present. It is therefore not obvious

that this kind of argument can rule out rational bubbles on shares of stock.

(d) Assets for which there exists a “backstop-technology” For some articles of

trade there exists substitutes in elastic supply which will be demanded if the price of

the article becomes suffi ciently high. Such a substitute is called a “backstop-technology”.

For example oil and other fossil fuels will, when their prices become suffi ciently high,

be subject to intense competition from substitutes (renewable energy sources). This

precludes an unbounded bubble process in the price of oil.

On account of the arguments (c) and (d), it seems more diffi cult to rule out rational

bubbles when it comes to assets which are not reproducible or substitutable, let alone

assets whose fundamentals are diffi cult to ascertain. For some assets the fundamentals

are not easily ascertained. Examples are paintings of past great artists, rare stamps,

diamonds, gold etc. Also new firms that introduce completely novel products and tech-

nologies are potential candidates. Think of the proliferation of radio broadcasting in the

1920s before the wall Street crash in 1929 and the internet in the 1990s before the dotcom

bubble burst in 2000.

What these situations allow for may not be termed rational bubbles, if by definition

this concept requires a well-defined fundamental. Then we may think of a broader class

of real-world bubbly phenomena driven by self-reinforcing expectations.

4.4.2 Adding general equilibrium arguments

The above considerations are of a partial equilibrium nature. On top of this, general

equilibrium arguments can be put forward to limit the possibility of rational bubbles. We

may briefly give a flavour of two such general equilibrium arguments. We still consider

assets whose services are valued independently of the price and which, as in (a) above,

can be freely disposed of. A house, a machine, or a share in a firm yields a service in

consumption or production or in the form of a dividend stream. Since such an asset has
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an intrinsic value, p∗t , equal to the present value of the flow of services, one might believe

that positive rational bubbles on such assets can be ruled out in general equilibrium.

As we shall see, this is indeed true for an economy with a finite number of “neoclassical”

households (to be defined below), but not necessarily in an overlapping generations model.

Yet even there, rational bubbles can under certain conditions be ruled out.

(e) An economy with a finite number of infinitely-lived households Assume

that the economy consists of a finite number of infinitely-lived agents − here called house-
holds − indexed i = 1, 2, ..., N . The households are “neoclassical”in the sense that they

save only with a view to future consumption.

Under free disposal in point (a) we saw that pt < p∗t can not be an equilibrium. We

now consider the case of a positive bubble, i.e., pt > p∗t . All owners of the bubble asset

who are users will in this case prefer to sell and then rent ; this would imply excess supply

and could thus not be an equilibrium. Hence, we turn to households that are not users,

but speculators. Assuming “short selling”is legal, speculators may pursue “short selling”,

that is, they first rent the asset (for a contracted interval of time) and immediately sell

it at pt. This results in excess supply and so the asset price falls towards p∗t . Within the

contracted interval of time the speculators buy the asset back and return it to the original

owners in accordance with the loan accord. So pt > p∗t can not be an equilibrium.

Even ruling out “short selling”(which is sometimes outright forbidden), we can ex-

clude positive bubbles in the present setup with a finite number of households. To assume

that owners who are not users would want to hold the bubble asset forever as a permanent

investment will contradict that these owners are “neoclassical”. Indeed, their transver-

sality condition would be violated because the value of their wealth would grow at a rate

asymptotically equal to the rate of interest. This would allow them to increase their

consumption now without decreasing it later and without violating their No-Ponzi-Game

condition.

We have to instead imagine that the “neoclassical”households who own the bubble

asset, hold it against future sale. This could on the face of it seem rational enough

if there were some probability that not only would the bubble continue to exist, but

it would also grow so that the return would be at least as high as that yielded on an

alternative investment. Owners holding the asset in the expectation of a capital gain, will

thus plan to sell at some later point in time. Let ti be the point in time where household
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i wishes to sell and let

T = max [t1, t2, ..., tN ] .

Then nobody will plan to hold the asset after T. The household speculator, i, having

ti = T will thus not have anyone to sell to (other than people who will only pay p∗T ).

Anticipating this, no-one would buy or hold the asset the period before, and so on. So

no-one will want to buy or hold the asset in the first place.

The conclusion is that pt > p∗t cannot be a rational expectations equilibrium in a setup

with a finite number of “neoclassical”households.

The same line of reasoning does not, however, go through in an overlapping generations

model where new households − that is, new traders − enter the economy every period.

(f) An economy with interest rate above the output growth rate In an overlap-

ping generations (OLG) model with an infinite sequence of new decision makers, rational

bubbles are under certain conditions theoretically possible. The argument is that with

N →∞, T as defined above is not bounded. Although this unboundedness is a necessary
condition for rational bubbles, it is not suffi cient, however.

To see why, let us return to the arbitrage examples 1, 2, and 3 where we have a−1 =

1 + r so that a hypothetical rational bubble has the form bt+1 = (1 + r)bt +ut+1, where

Etut+1 = 0. So in expected value the hypothetical bubble is growing at a rate equal to

the interest rate, r. If at the same time r is higher than the long-run output growth rate,

the value of the expanding bubble asset would sooner or later be larger than GDP and

aggregate saving would not suffi ce to back its continued growth. Agents with rational

expectations anticipate this and so the bubble never gets started.

This point is valid when the interest rate in the OLG economy is higher than the

growth rate of the economy − which is normally considered the realistic case. Yet, the
opposite case is possible and in that situation it is less easy to rule out rational asset

price bubbles. This is also the case in situations with imperfect credit markets. It turns

out that the presence of segmented financial markets or externalities that create a wedge

between private and social returns on productive investment may increase the scope for

rational bubbles (Blanchard, 2008).
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4.5 Conclusion

The empirical evidence concerning asset price bubbles in general and rational asset price

bubbles in particular seems inconclusive. It is very diffi cult to statistically distinguish

between bubbles and mis-specified fundamentals. Rational bubbles can also have more

complicated forms than the bursting bubble in Example 3 above. For example Evans

(1991) and Hall et al. (1999) study “regime-switching”rational bubbles.

Whatever the possible limits to the plausibility of rational bubbles in asset prices, it is

useful to be aware of their logical structure and the variety of forms they can take as logical

possibilities. Rational bubbles may serve as a benchmark for a variety of “behavioral asset

price bubbles”, i.e., bubbles arising through particular psychological mechanisms. This

would take us to behavioral finance theory. The reader is referred to, e.g., Shiller (2003).

For surveys on the theory of rational bubbles and econometric bubble tests, see Salge

(1997) and Gürkaynak (2008). For discussions of famous historical bubble episodes, see

the symposium in Journal of Economic Perspectives 4, No. 2, 1990, and Shiller (2005).

5 Appendix

A. The log-linear specification

In many macroeconomic models with rational expectations the equations are specified as

log-linear, that is, as being linear in the logarithms of the variables. If Y, X, and Z are

the original positive stochastic variables, defining y = lnY , x = lnX, and z = lnZ, a

log-linear relationship between Y, X, and Z is a relation of the form

y = α + βx+ γz, (43)

where α, β, and γ are constants. The motivation for assuming log-linearity can be:

(a) Linearity is convenient because of the simple rule for the expected value of a sum:

E(α+βx+γz) = α+βE(x) +γE(z), where E is the expectation operator. Indeed,

for a non-linear function, f(x, z), we generally have E(f(x, z)) 6= f(E(x), E(z)).

(b) Linearity in logs may often seem a more realistic assumption than linearity in any-

thing else.

(c) In time series models a logarithmic transformation of the variables followed by

formation of first differences can be the road to eliminating a trend in the mean
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and variance.

As to point (b) we state the following:

CLAIM To assume linearity in logs is equivalent to assuming constant elasticities.

Proof Let the positive variables Y , X and Z be related by Y = F (X, Z), where F is a

continuous function with continuous partial derivatives. Taking the differential on both

sides of ln Y = lnF (X,Z), we get

d lnY =
1

F (X,Z)

∂F

∂X
dX +

1

F (X,Z)

∂F

∂Z
dZ (44)

=
X

Y

∂Y

∂X

dX

X
+
Z

Y

∂Y

∂Z

dZ

Z
= ηY X

dX

X
+ ηY Z

dZ

Z
= ηY Xd lnX + ηY Zd lnZ,

where ηY X and ηY Z are the partial elasticities of Y w.r.t. X and Z, respectively. Thus,

defining y = lnY , x = lnX, and z = lnZ, gives

dy = ηY Xdx+ ηY Zdz. (45)

Assuming constant elasticities amounts to putting ηY X = β and ηY Z = γ, where β and

γ are constants. Then we can write (45) as dy = βdx+ γdz. By integration, we get (43)

where α is now an arbitrary integration constant. Hereby we have shown that constant

elasticities imply a log-linear relationship between the variables.

Now, let us instead start by assuming the log-linear relationship (43). Then,

∂y

∂x
= β,

∂y

∂z
= γ. (46)

But (43), together with the definitions of y, x and z, implies that

Y = eα+βx+γz = eα+β lnX+γ lnZ ,

from which follows that

∂Y

∂X
= Y β

1

X
so that ηY X ≡

X

Y

∂Y

∂X
= β,

and
∂Y

∂Z
= Y γ

1

Z
so that ηY Z ≡

Z

Y

∂Y

∂Z
= γ.

That is, the partial elasticities are constant. �

So, when the variables are in logs, then the coeffi cients in the linear expressions are

the elasticities. Note, however, that the interest rate is normally an exception. It is often
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regarded as more realistic to let the interest rate itself and not its logarithm enter linearly.

Then the associated coeffi cient indicates the semi-elasticity with respect to the interest

rate.

B. Conditional expectations and the law of iterated expectations

The mathematical conditional expectation is a weighted sum of the possible values of the

stochastic variable with weights equal to the corresponding conditional probabilities.

Let Y andX be two discrete stochastic variables with joint probability function j(y, x)

and marginal probability functions f(y) and g(x), respectively. If the conditional probabil-

ity function for Y given X = x0 is denoted h(y |x0) , we have h(y |x0) = j(y, x0)/g(x0), as-

suming g(x0) > 0. The conditional expectation of Y given X = x0, denoted E(Y |X = x0),

is then

E(Y |X = x0) =
∑
y

y
j(y, x0)

g(x0)
, (47)

where the summation is over all the possible values of y.

This conditional expectation is a function of x0. Since x0 is just one possible value of

the stochastic variable X, we interpret the conditional expectation itself as a stochastic

variable and write it asE(Y |X).Generally, for a function of the discrete stochastic variable

X, say k(X), the expected value is

E(k(X)) =
∑
x

k(x)g(x).

When we here let the conditional expectation E(Y |X) play the role of k(X) and sum over

all x for which g(x) > 0, we get

E(E(Y |X)) =
∑
x

E(Y |x)g(x) =
∑
x

(∑
y

y
j(y, x)

g(x)

)
g(x) (by (47))

=
∑
y

y

(∑
x

j(y, x)

)
=
∑
y

yf(y) = E(Y ).

This result is a manifestation of the law of iterated expectations: the unconditional

expectation of the conditional expectation of Y is given by the unconditional expectation

of Y.

Now consider the case where Y and X are continuous stochastic variables with joint

probability density function j(y, x) and marginal density functions f(y) and g(x), respec-

tively. If the conditional density function for Y given X = x0 is denoted h(y |x0) , we have
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h(y |x0) = j(y, x0)/g(x0), assuming g(x0) > 0. The conditional expectation of Y given

X = x0 is

E(Y |X = x0) =

∫ ∞
−∞

y
j(y, x0)

g(x0)
dy, (48)

where we have assumed that the range of Y is (−∞,∞). Again, we may view the condi-

tional expectation itself as a stochastic variable and write it as E(Y |X). Generally, for a

function of the continuous stochastic variable X, say k(X), the expected value is

E(k(X)) =

∫
R

k(x)g(x)dx,

where R stands for the range of X.When we let the conditional expectation E(Y |X) play

the role of k(X), we get

E(E(Y |X)) =

∫
R

E(Y |x)g(x)dx =

∫
R

(∫ ∞
−∞

y
j(y, x)

g(x)
dy

)
g(x)dx (by (48))

=

∫ ∞
−∞

y

(∫
R

j(y, x)dx

)
dy =

∫ ∞
−∞

yf(y)dy = E(Y ). (49)

This shows us the law of iterated expectations in action for continuous stochastic

variables: the unconditional expectation of the conditional expectation of Y is given by

the unconditional expectation of Y.

EXAMPLE Let the two stochastic variables, X and Y, follow a two-dimensional normal

distribution. Then, frommathematical statistics we know that the conditional expectation

of Y given X satisfies

E(Y |X) = E(Y ) +
Cov(Y,X)

Var(X)
(X − E(X)).

Taking expectations on both sides gives

E(E(Y |X)) = E(Y ) +
Cov(Y,X)

Var(X)
(E(X)− E(X)) = E(Y ). �

We may also express the law of iterated expectations in terms of subsets of the original

outcome space for a stochastic variable. Let the event A be a subset of the outcome space
for Y and let B be a subset of A. Then the law of iterated expectations takes the form

E(E(Y |B)|A) = E(Y |A). (50)

That is, when B ⊆ A, the expectation, conditional on A, of the expectation of Y , condi-
tional on B, is the same as the expectation, conditional on A, of Y.
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Often we consider a dynamic context where expectations are conditional on dated

information It−i (i = 1, 2, ...). By a, so far, “informal analogy”with (49) we then write

the law of iterated expectations this way:

E(E(Yt|It−i)) = E(Yt), for i = 1, 2, .... (51)

In words: the unconditional expectation of the conditional expectation of Yt, given the

information up to time t − i equals the unconditional expectation of Yt. Similarly, by a,
so far, “informal analogy”with (50) we may write

E(E(Yt+2|It+1)|It) = E(Yt+2|It). (52)

That is, the expectation today of the expectation tomorrow, when more may be known,

of a variable the day after tomorrow is the same as the expectation today of the variable

the day after tomorrow. Intuitively: you ask a stockbroker in which direction she expects

to revise her expectations upon the arrival of more information. If the broker answers

“upward”, say, then another broker is recommended.

The notation used in the transition from (50) to (52) might seem problematic, though.

That is why we talk of “informal analogy”. The sets A and B are subsets of the outcome
space and B ⊆ A. In contrast, the “information”or “information content”represented by
our symbol It will, for the uninitiated, inevitably be understood in a meaning not fitting

the inclusion It+1 ⊆ It. Intuitively “information”dictates the opposite inclusion, namely

as a set which expands over time − more and more “information”(like “knowledge”or
“available data”) is revealed as time proceeds.

It is possible, however, to interpret the information It from another angle so as to

make the notation in (52) fully comply with that in (50). Let the outcome space Ω denote

the set of ex ante possible15 sequences {(Yt, Xt)}Tt=t0 , where Yt and Xt are vectors of date-

t endogenous and exogenous stochastic variables, respectively, and where T is the time

horizon, possibly T =∞. For t ∈ {t0, t0 + 1, . . . , T} , let the subset Ωt ⊆ Ω be defined as

the of time t still possible sequences {(Ys, Xs)}Ts=t . Now, as time proceeds, more and more
realizations occur, that is, more and more of the ex ante random states, (Yt, Xt), become

historical data, (yt, xt). Hence, as time proceeds, the subset Ωt shrinks in the sense that

Ωt+1 ⊆ Ωt. The increasing amount of information and the “reduced uncertainty”can thus

be seen as two sides of the same thing. Interpreting It this way, i.e., as “partial lack of

uncertainty”, the expression (52) means the same thing as

E(E(Yt+2|Ωt+1)|Ωt) = E(Yt+2|Ωt).

15By “possible”is meant “feasible according to a given model”.
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This is in complete harmony with (50).

C. Properties of the model-consistent forecast

As in the text of Section 24.2.2, let et denote the model-consistent forecast error Yt −
E(Yt|It−1). Then, if St−1 represents information contained in It−1,

E(et |St−1) = E(Yt − E(Yt |It−1) |St−1) = E(Yt |St−1)− E(E(Yt |It−1) |St−1)

= E(Yt |St−1)− E(Yt |St−1) = 0, (53)

where we have used that E(E(Yt |It−1) |St−1) = E(Yt |St−1) , by the law of iterated expec-

tations. With St−1 = It−1 we have, as a special case,

E(et |It−1) = 0, as well as (54)

E(et) = E(Yt − E(Yt |It−1)) = E(Yt)− E(E(Yt |It−1)) = 0,

in view of (51) with i = 1. This proves property (a) in Section 24.2.3.

As to property (b) in Section 24.2.2, for i = 1, 2, ..., let st−i be an arbitrary variable

value belonging to the information It−i. Then, E(etst−i |It−i) = st−iE(et |It−i) = 0, by

(53) with St−1 = It−i (since It−i is contained in It−1). Thus, by the principle (51),

E(etst−i) = E (E(etst−i |It−i)) = E(0) = 0 for i = 1, 2, .... (55)

This result is known as the orthogonality property of model-consistent expectations (two

stochastic variables Z and V are said to be orthogonal if E(ZV ) = 0). From the general

formula for the (unconditional) covariance follows

Cov(etst−i) = E(etst−i)− E(et)E(st−i) = 0− 0 = 0, for i = 1, 2, ...,

by (54) and (55). In particular, with st−i = et−i, we get Cov(etet−i) = 0. This proves that

model-consistent forecast errors exhibit lack of serial correlation.

6 Exercises

1. Let {Xt} be a stochastic process in discrete time. Suppose Yt = Xt + et and

Xt = Xt−1 + εt, where et and εt are white noise.

a) Is {Xt} a random walk? Why or why not?
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b) Is {Yt} a random walk? Why or why not?

c) Calculate the rational expectation of Xt conditional on all relevant information up

to and including period t− 1.

d) What is the rational expectation of Yt conditional on all relevant information up to

and including period t− 1?

e) Compare with the subjective expectation of Yt based on the adaptive expectations

formula with adjustment speed equal to one.

2. Consider a simple Keynesian model of a closed economy with constant wages and

prices (behind the scene), abundant capacity, and output determined by demand:

Yt = Dt = Ct + Ī +Gt, (1)

Ct = α + βY e
t−1,t, α > 0, 0 < β < 1, (2)

Gt = (1− ρ)Ḡ+ ρGt−1 + εt, Ḡ > 0, 0 < ρ < 1, (3)

where the endogenous variables are Yt = output (= income), Dt = aggregate demand,

Ct = consumption, and Y e
t−1,t = expected output (income) in period t as seen from period

t−1, while Gt, which stands for government spending on goods and services, is considered

exogenous as is εt, which is white noise. Finally, investment, Ī, and the parameters α, β,

ρ, and Ḡ are given positive constants.

Suppose expectations are “static”in the sense that expected income in period t equals

actual income in the previous period.

a) Solve for Yt.

b) Find the income multiplier (partial derivative of Yt) with respect to a change in

Gt−1 and εt, respectively.

Suppose instead that expectations are rational.

c) Explain what this means.

d) Solve for Yt.

e) Find the income multiplier with respect to a change in Gt−1 and εt, respectively.
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f) Compare the result under e) with that under b). Comment.

3. Consider arbitrage between equity shares and a riskless asset paying the constant

rate of return r > 0. Let pt denote the price at the beginning of period t of a share that

at the end of period t yields the dividend dt. As seen from period t there is uncertainty

about pt+i and dt+i for i = 1, 2,. . . . Suppose agents have rational expectations and care

only about expected return (risk neutrality).

a) Write down the no-arbitrage condition.

Suppose dividends follow the process dt = d̄ + εt, where d̄ is a positive constant and

εt is white noise, observable in period t, but not known in advance.

b) Find the fundamental solution for pt and let it be denoted p∗t . Hint: given yt

= aEtyt+1 + c xt, the fundamental solution is yt = cxt + c
∑∞

i=1 a
iEtxt+i.

Suppose someone claims that the share price follows the process

pt = p∗t + bt,

with a given b0 > 0 and, for t = 0, 1, 2,. . . ,

bt+1 =

{
1+r
qt
bt with probability qt,

0 with probability 1− qt,

where qt = f(bt), f
′ < 0.

c) What is an asset price bubble and what is a rational asset price bubble?

d) Can the described bt process be a rational asset price bubble? Hint: a bubble

component associated with the inhomogenous equation yt = aEtyt+1 + c xt is a

solution, different from zero, to the homogeneous equation, yt = aEtyt+1.

–
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