Chapter 1

Introduction

The art of successful theorizing is to make the inevitable simplifying
assumptions in such a way that the final results are not very sensitive.

—Robert M. Solow (1956, p. 65)

1.1 Macroeconomics

1.1.1 The field

Economics is the social science that studies the production and distribution of
goods and services in society. Then, what defines the branch of economics named
macroeconomics? There are two defining characteristics. First, macroeconomics
is the systematic study of the economic interactions between human beings in
society as a whole. This could also be said of microeconomic general equilibrium
theory, however. The second defining characteristic of macroeconomics is that
it aims at understanding the empirical regularities in the behavior of aggregate
economic variables such as aggregate production, investment, unemployment, the
general price level for goods and services, the inflation rate, the level of interest
rates, the level of real wages, the foreign exchange rate, productivity growth etc.
Thus, macroeconomics studies on the major lines of the economics of a society
and does so in an intertemporal perspective — evolution over time is in focus.
The aspiration of macroeconomics is three-fold:

1. to explain the levels of the aggregate variables as well as their movement
over time in the short run and the long run;

2. to make well-founded forecasts possible;
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4 CHAPTER 1. INTRODUCTION

3. to provide foundations for rational economic policy applicable to macroeco-
nomic problems, be they short-run distress in the form of economic recession
or problems of a more long-term, structural character.

We use economic models to make our complex economic environment accessi-
ble for theoretical analysis. What is an economic model? It is a way of organizing
one’s thoughts about the economic functioning of a society. A more specific an-
swer is to define an economic model as a conceptual structure based on a set of
mathematically formulated assumptions which have an economic interpretation
— a link to the economic world outside the window — and from which empirically
testable predictions can be derived. In particular, a macroeconomic model is an
economic model concerned with macroeconomic phenomena, i.e., the short-run
fluctuations of aggregate variables as well as their long-run trend.

Any economic analysis is based upon a conceptual framework. Formulating
this framework as a precisely stated economic model helps to break down the issue
into assumptions about the concerns and constraints of households and firms and
the character of the market environment within which these agents interact. The
advantage of this approach is that it makes rigorous reasoning possible, lays bare
where the underlying disagreements behind different interpretations of economic
phenomena are, and makes sensitivity analysis of the conclusions amenable. By
being explicit about the concerns of the agents and the technological constraints
and social structures (market forms, social conventions, and legal institutions)
that condition their interactions, this approach allows analysis of policy interven-
tions, including the use of well-established tools of welfare economics. Moreover,
mathematical modeling is a simple necessity to keep track of the many mutual
dependencies and to provide a consistency check of the many accounting rela-
tionships involved. And mathematical modeling opens up for use of powerful
mathematical theorems from the mathematical toolbox. Without these math
tools it would in many cases be impossible to reach any conclusion whatsoever.

Students of economics are often perplexed or even frustrated by macroeco-
nomics being so preoccupied with composite theoretical models. Why not study
the issues each at a time? The reason is that the issues, say housing prices and
changes in unemployment, are not separate, but parts of a complex system of
mutually dependent variables. The economic system as a whole is more than
the sum of its parts. This also brings to mind that macroeconomics has to take
advantage of theoretical and empirical knowledge from other branches of eco-
nomics, including microeconomics, industrial organization, game theory, political
economy, behavioral economics, and even sociology and psychology.

At the same time models necessarily give a simplified picture of the economic
reality. Ignoring secondary aspects and details is indispensable to be able to
focus on the essential features of a given problem. In particular macroeconomics
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1.1. Macroeconomics 5

deliberately simplifies the description of the individual actors so as to make the
analysis of the interaction between different types of actors manageable.

The assessment of — and choice between — competing simplifying frameworks
should be based on how well they perform in relation to the three-fold aim of
macroeconomics listed above, given the problem at hand. A necessary condition
for good performance is the empirical tenability of the model’s predictions. A
guiding principle in the development of useful models therefore lies in confronta-
tion of the predictions as well as the crucial assumptions with data. This can be
based on a variety of methods ranging from sophisticated econometric techniques
to qualitative case studies.

Three constituents make up an economic theory: 1) the union of connected
and non-contradictory economic models, 2) the theorems derived from these, and
3) the conceptual system defining the correspondence between the variables of the
models and the social reality to which they are to be applied. Being about the
interaction of human beings in societies, the subject matter of economic theory is
extremely complex and at the same time history dependent. The overall political,
social, and economic institutions (“rules of the game” in a broad sense) evolve
over time.

These circumstances explain why economic theory is far from the natural sci-
ences with respect to precision and undisputable empirical foundation. Especially
in macroeconomics, to avoid confusion, the student should be aware of the exis-
tence of differing conceptions and in several matters even conflicting theoretical
schools.

1.1.2 The different “runs”

This textbook is about industrialized market economies of today. We study basic
concepts, models, and analytical methods of relevance for understanding macro-
economic processes in such economies. Sometimes centripetal and sometimes
centrifugal forces are dominating. A simplifying device is the distinction between
“short-run”, “medium-run”, and “long-run” analysis. The first concentrates on
the behavior of the macroeconomic variables within a time horizon of at most
a few years, whereas “long-run” analysis deals with a considerably longer time
horizon — indeed, long enough for changes in the capital stock, population, and
technology to have a dominating influence on changes in the level of production.
The “medium run” is then something in between.

To be more specific, long-run macromodels study the evolution of an econ-
omy’s productive capacity over time. Typically a time span of at least 15 years
is considered. The analytical framework is by and large supply-dominated. That
is, variations in the employment rate for labor and capital due to demand fluctu-
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6 CHAPTER 1. INTRODUCTION

ations are abstracted away. This can to a first approximation be justified by the
fact that these variations, at least in advanced economies, tend to remain within a
fairly narrow band. Therefore, under “normal” circumstances the economic out-
come after, say, a 20 years’ interval reflects primarily the change in supply side
factors such as the educational level of the labor force, the capital stock, and the
technology. Within time horizon also changes in institutions (market structure,
government planning and regulation, rules of the game) come into focus.

By contrast, when we speak of short-run macromodels, we think of models
concentrating on mechanisms that determine how fully an economy uses its pro-
ductive capacity at a given point in time. The focus is on the level of output and
employment within a time horizon less than, say, three years. These models are
typically demand-dominated. In this time perspective the demand side, mone-
tary factors, and price rigidities matter significantly. Shifts in aggregate demand
(induced by, e.g., changes in fiscal or monetary policy, exports, interest rates,
the general state of confidence, etc.) tend to be accommodated by changes in
the produced quantities rather than in the prices of manufactured goods and ser-
vices. By contrast, variations in the supply of production factors and technology
are diminutive and of limited importance within this time span. With Keynes’
words the aim of short-run analysis is to explain “what determines the actual
employment of the available resources” (Keynes 1936, p. 4).

The short and the long run make up the traditional subdivision of macro-
economics. It is convenient and fruitful, however, to include also a medium run,
referring to a time interval of, say, three-to-fifteen years.! We shall call models
attempting to bridge the gap between the short and the long run medium-run
macromodels. These models deal with the regularities exhibited by sequences of
short periods. However, in contrast to long-run models which focus on the trend
of the economy, medium-run models attempt to understand the pattern charac-
terizing the fluctuations around the trend. In this context, variations at both
the demand and supply side are important. Indeed, at the centre of attention
is the dynamic interaction between demand and supply factors, the correction
of expectations, and the time-consuming adjustment of wages and prices. Such
models are also sometimes called business cycle models.

Returning to the “long run”, what does it embrace in this book? Well, since
the surge of “new growth theory” or “endogenous growth theory” in the late 1980s
and early 1990s, growth theory has developed into a specialized discipline study-
ing the factors and mechanisms that determine the evolution of technology and
productivity (Paul Romer 1987, 1990; Phillipe Aghion and Peter Howitt, 1992).
An attempt to give a systematic account of this expanding line of work within

! These number-of-years figures are only a rough indication. The different “runs” are relative
concepts and their appropriateness depends on the specific problem and circumstances at hand.
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1.1. Macroeconomics

macroeconomics would take us too far. When we refer to “long-run macromod-
els”, we just think of macromodels with a time horizon long enough such that
changes in the capital stock, population, and technology matter. Apart from a
taste of “new growth theory” in Chapter 11, we leave the explanation of changes in
technology out of consideration, which is tantamount to regarding these changes
as exogenous.?
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Figure 1.1: Quarterly Industrial Production Index in six major countries (Q1-1958 to
Q2-2013; index Q1-1961=100). Source: OECD Industry and Service Statistics. Note:
Industrial production includes manufacturing, mining and quarrying, electricity, gas,
and water, and construction.

In addition to the time scale dimension, the national-international dimension
is important for macroeconomics. Most industrialized economies participate in
international trade of goods and financial assets. This results in considerable
mutual dependency and co-movement of these economies. Downturns as well as
upturns occur at about the same time, as indicated by Fig. 1.1. In particular the
economic recessions triggered by the oil price shocks in 1973 and 1980 and by the
disruption of credit markets in the outbreak 2007 of the Global Financial Crisis
are visible across the countries, as also shown by the evolution of GDP, cf. Fig.
1.2. Many of the models and mechanisms treated in this text will therefore be
considered not only in a closed economy setup, but also from the point of view
of open economies.

2References to textbooks on economic growth are given in Literature notes at the end of this
chapter.
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Figure 1.2: Indexed real GDP for Denmark, Eurozone and US, 1995-2012 (2007=100).
Source: EcoWin and Statistics Denmark.

1.2 Elements of macroeconomic analysis

1.2.1 Model elements

Basic categories

e Agents: We use simple descriptions of the economic agents (decision mak-
ers): A household is an abstract entity making consumption, saving and
labor supply decisions. A firm is an abstract entity making decisions about
production and sales. The administrative staff and sales personnel are
treated along with the production workers as an undifferentiated labor in-
put.

e Households face budget constraints, and firms face technological constraints,
in macroeconomics.typically described as production functions.

e Resources: Physical capital refers to stocks of reproducible durable means
of production such as machines and structures. Reproducible non-durable
means of production include raw materials, semi-manufacture, and energy
(often lumped together as intermediate goods). Natural resources include
land and other non-reproducible means of production. Human capital is
the stock of productive skills embodied in an individual.

e Goods, labor, and assets markets.
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1.2. Elements of macroeconomic analysis

e Market forms and other rules regulating the economic interactions.

Types of variables

Endogenous variable = variable whose value is determined within the partic-
ular model considered. FEzxogenous variable = variable whose value the particular
model considered takes as given.

Stock = a variable measured as a quantity at a given point in time. Flow.=
a variable measured as a quantity per time unit.

State variable = variable whose value is determined historically at any point
in time. For example, the stock (quantity) of water in a bathtub at time ¢ is
historically determined as the accumulated quantity of water stemming from the
previous inflow and outflow. But if y; is a variable which is not tied down by its
own past but, on the contrary, can immediately adjust if new conditions or new
information emerge, then 1, is a jump variable. A decision about how much to
consume and how much to save — or dissave — in a given month is an example
of a jump variable. Returning to our bath tub example: in the moment we pull
out the waste plug, the outflow of water per time unit will jump from zero to a
positive value and is thus a jump variable.

A state variable may alternatively be called a predetermined variable. And
a jump variable may alternatively be called a non-predetermined variable or a
control variable.

Types of model relations

Although model relations can take different forms, in macroeconomics they
often have the form of equations. A taxonomy for macroeconomic model relations
is the following;:

1. Technology equations describe relations between inputs and output (pro-
duction functions and similar).

2. Preference equations express preferences, e.g. U = ZtT:o (“(L) p>0u >

1+p)t”
0,u"” < 0.
3. Budget constraints, whether in the form of an equation or an inequality.

4. Institutional equations refer to relationships required by law (e.g., how the
tax levied depends on income) and similar.

5. Behavioral equations describe the behavioral response to the determinants
of behavior. This includes an agent’s optimizing behavior written as a func-
tion of its determinants. A consumption function is an example. Whether
first-order conditions in optimization problems should be considered behav-
ioral equations or just separate first-order conditions is a matter of taste.
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10 CHAPTER 1. INTRODUCTION

6. Identity equations are true by definition of the variables involved. National
income accounting equations are an example.

7. Equilibrium equations define the condition for equilibrium (“state of rest”)
of some kind, for instance equality of Walrasian demand and Walrasian
supply. No-arbitrage conditions for the asset markets also belong under the
heading equilibrium condition.

8. Initial conditions are equations fixing the initial values of the state variables
in a dynamic model

Types of analysis

Static versus dynamic models

A static model is a model where time does not enter or at least where all
variables refer to the same point in time. A dynamic model is a model that
establishes a link from the state of the economic system (including its recent
history) to the subsequent state. A dynamic model thus allows a derivation of
the evolution over time of the endogenous variables.

Macroeconomics is about studies processes in real time and the emphasis is
thus on dynamic models. Occasionally we consider quasi-static models. The
modifier “quasi-” is meant to indicate that although the model concentrates on
a single period, it considers some variables as inherited from the past and some
variables that involve expectations about the future. What we call temporary
equilibrium models belong to this category. Their role is to serve as a prelude to
a more elaborate dynamic model dealing with a sequence of states.

Dynamic analysis aims at establishing dynamic properties of an economic
system: is the system stable or unstable, is it asymptotically stable, if so, is it
globally or only locally asymptotically stable? Is it oscillatory? If the system is
asymptotically stable, how fast is the adjustment?

A study of dynamic effects of a parameter shift in real time is a variety of
dynamic analysis. Comparative analysis is a different thing; in comparative dy-
namics we compare solutions to a dynamic model under alternative values of
the parameters and exogenous variables; in comparative statics we compare solu-
tions to a static model under alternative values of the parameters and exogenous
variables.

In dynamic modeling and analysis we have a choice between framing the model
in period terms or in continuous time. Period analysis, also called discrete time
analysis, is the method we generally apply up to Chapter 9, where a transition
to continuous-time analysis is undertaken.
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1.2. Elements of macroeconomic analysis 11

Partial equilibrium analysis versus general equilibrium analysis

We say that a given single market is in partial equilibrium at a given point in
time if for given prices and quantities in the other markets, the agents’ chosen
actions in this market are mutually compatible. In contrast, the concept of general
equilibrium takes the mutual dependencies between markets into account. We say
that a given economy is in general equilibrium at a given point in time if in all
markets, the actions chosen by the agents are mutually compatible.

An analyst trying to clarify a partial equilibrium problem is doing partial
equilibrium analysis. Thus partial equilibrium analysis does not take into account
the feedbacks from the outcome in a single market to the rest of the economy and
the feedbacks from these feedbacks — and so on. In contrast, an analyst trying to
clarify a general equilibrium problem is doing general equilibrium analysis. This
requires considering the mutual dependencies in the system of markets as a whole.

Sometimes in the literature also the analysis of the constrained maximization
problem of a single decision maker is called partial equilibrium analysis. Consider
for instance the consumption-saving decision of a household. Then the derivation
of the saving function of the household is by some authors included under the
heading partial equilibrium analysis for the reason that the real wage and real
interest rate appearing as arguments in the derived saving function are arbitrary.
In this book, however, we shall call the analysis of a single decision maker’s
problem partial analysis, not partial equilibrium analysis. The motivation is that
transparency is improved if one preserves the notion of equilibrium for a state of
a market or a state of a system of markets.

1.2.2 From input to output

In macroeconomic theory the production of a firm, a sector, or the economy as a
whole is often represented by a two-inputs-one-output production function,

Y = F(K, L), (L.1)

where Y is output (value added in real terms), K is capital input, and L is labor
input (K > 0, L > 0). The idea is that for several issues it is useful to think of
output as a homogeneous good which is produced by two inputs, one of which is
capital, by which we mean a reproducible durable means of production, the other
being labor, often considered a non-producible human input. Of course, thinking
of these variables as representing one-dimensional entities is a drastic abstraction,
but may nevertheless be worthwhile in a first approach.

Simple as it looks, an equation like (1.1) may nevertheless raise several con-
ceptual issues.
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12 CHAPTER 1. INTRODUCTION

The time dimension of input and output

A key issue is: how are the variables entering (1.1) denominated, that is, what is
the dimension of the variables? Or in what units are the variables measured? It
is most satisfactory, from a theoretical as well as empirical point of view, to think
of both outputs and inputs as flows: quantities per unit of time. This is generally
recognized as far as Y is concerned. It is less recognized, however, concerning K
and L, a circumstance which is probably related to a tradition in macroeconomic
notation, as we will now explain.

Let the time unit be one year. Then the K appearing in the production
function should be seen as the number of machine hours per year. Similarly, L
should be seen as the number of labor hours per year. Unless otherwise specified,
it should be understood that the rate of utilization of the production factors is
constant over time. For convenience, one can then normalize the rate of utilization
of each factor to equal one. We thus define one machine-year as the service of
a machine in operation h hours a year. If K machines are in operation and
on average deliver one machine-year per year, then the total capital input is K
machine-years per year:

K (machine-yrs/yr) = K (machines) x 1 ((machine-yrs/yr)/machine), (1.2)

where the dimension of the variables is indicated in brackets. Note that to be
correct, an equation should have not only the same quantity on both sides, but
also the same dimension. Both conditions are satisfied by (1.2), since K x 1 = K
and (machines x (machine-yrs/yr)/machine) = (machine-yrs/yr). Sometimes we
consider equations where a bare number, also known as a dimensionless quantity,
appears on both sides. Such quantities may arise as the the product or ratio of
two quantities that are not dimensionless. For instance, the fraction of income
saved is a bare number since both saving and income are measured in the same
units, say, euros per year, whereby the dimensions cancel out. In such cases the
variable in question is said to have dimension one.?

Considering the labor input, suppose similarly that the stock of laborers is L
men and that on average they deliver one man-year (say h hours) per year. Then
the total labor input is L man-years per year:

L(man-yrs/yr) = L(men) X 1((man-yrs/yr)/man). (1.3)

Now, a reason that stocks and flows may be confused is that often the same
symbol, K, appearing in the production function as a capital input flow, also,

31t is like in physics. Length, time, and speed are measured in dimensional units, such as
metre, second and metre/second whereas the alcohol percentage in a beverage is a bare number.
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1.2. Elements of macroeconomic analysis 13

within the same model, appears as the capital stock in an accumulation equation
like
Kt+1 - Kt + [t - (SKt (14)

In this equation, I; is gross investment in period ¢, and ¢ is the rate of physical
capital depreciation due to wear and tear (0 < § < 1). So the symbol K; must
represent the capital stock at the beginning of period ¢. In (1.4) there is no role for
the rate of utilization of the capital stock, which is, however, of key importance
n (1.1). Similarly, there is a tradition in macroeconomics to denote the number
of heads in the labor force by L and write, for example, L; = Lo(1 + n)?, where
n is a constant growth rate of the labor force. Here L; measures a stock (number
of persons) whereas in (1.1) and (1.3) L measures a flow that depends on the
average rate of utilization of the stock over the year.

This text will not attempt a break with this tradition of using the same symbol
for two in principle different variables. But we should ensure that our notation
1s consistent. This requires normalization of the utilization rates for capital and
labor in the production function so as to equal one, as indicated in (1.2) and
(1.3) above. We are then allowed to use the same symbol for a stock and the
corresponding flow because the values of the two variables will coincide and their
dimensions are the same.

As an illustration of the importance of being aware of the distinction between
stock and flows, let

Y = GDP per year, and
P = average size of population over the year.
Then income per year per capita can be decomposed the following way:

GDP value added/yr ~ value added/yr

P #people  #hours of work/yr
#hours of work/yr " #employed workers  #workers

(1.5)

X .
#employed workers #workers #people ’

where # stand for “number of”, and “employed workers” and “workers” stand for
“full-time” people, thus weighting by the fraction of a standard man-year they
actually work or at least want to work, respectively. That is, aggregate per capita
income equals average labor productivity times average labor intensity times the
employment rate times the workforce participation rate. An increase from one
year to the next in per capita income thus reflects the net effect of changes in the
four ratios on the right-hand side. Similarly, a fall in per capita income (a ratio
between a flow and a stock) need not reflect for instance a fall in productivity,
but may reflect, say, a fall in the employment rate (a rise in unemployment) or
in the participation rate due to an ageing population.
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14 CHAPTER 1. INTRODUCTION

Natural resources?

A second conceptual issue concerning the production function in (1.1) is: what
about the role of land and other natural resources? As farming requires land and
factories and office buildings require building sites, a third argument, a natural
resource input, should in principle appear in (1.1). In theoretical macroeconomics
for industrialized economies, to simplify, this third factor is often left out because
it does not vary much as an input to production and tends to be of secondary
importance in value terms.

Intermediate goods?

A third conceptual issue concerning the production function in (1.1) relates to
the question: what about intermediate goods? By intermediate goods we mean
non-durable means of production like raw materials and energy. Certainly, raw
materials and energy are generally necessary inputs at the micro level. It therefore
seems strange to regard output as produced by only capital and labor. Again,
the motivation is that putting the engineering input-output relations involving
intermediate goods aside is a convenient simplification. One imagines that at a
lower stage of production, raw materials and energy are continuously produced
by capital and labor, but are then immediately used up at a higher stage of
production, again using capital and labor. The value of these materials are not
part of value added in the sector or in the economy as a whole. Since value added
is what macroeconomics usually focuses at and what the Y in (1.1) represents,
materials therefore are often not explicit in the model.

On the other hand, if of interest for the problems studied, the analysis should,
of course, take into account that at the aggregate level in real world situations,
there will generally be a (minor) difference between produced and used-up raw
materials which then constitute net investment in inventories of materials.

To further clarify this point as well as more general aspects of how macro-
economic models are related to national income and product accounts, the next
section gives a review of national income accounting.

1.3 Macroeconomic models and national income
accounting

(very incomplete)
Stylized national income and product accounts

We give here a stylized picture of national income and product accounts with
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1.4. Some terminological points 15

emphasis on the conceptual structure. The basic point to be aware of is that
national income accounting looks at output from three sides:

e the production side (value added),
e the use side,

e the income side.

These three “sides” refer to different approaches to the practical measurement
of production and income: the “output approach”, the “expenditure approach”,
and the “income approach”.

Consider a closed economy with three production sectors. Sector 1 produces
intermediate goods (including raw materials and energy) in the amount @); per
time unit, Sector 2 produces durable capital goods in the amount ()5 per time
unit, and the third sector produces consumption goods in the amount ()3 per
time unit.

It is common to distinguish between three basic production factors available
ex ante a given production process. These are land or, more generally, non-
producible means of production, labor, and capital (producible durable means
of production). In practice also intermediate goods are a necessary production
input. As mentioned above, in simple models this input is regarded as itself
produced at an early stage within the production period and then used up during
the remainder of the production process. In more rigorous dynamic analyses,
however, the intermediate goods are considered produced prior to the production
process in which they are used. To see what this looks like and what it means to
abstract from it in the simpler models, we here consider intermediate goods as a
fourth input type produced separately in Sector 1.

1.4 Some terminological points

(Incomplete)

We follow the convention in macroeconomics and, unless otherwise specified,
use “capital” for physical capital, that is, a (re-producible) production factor. In
other branches of economics and in everyday language “capital” may mean the
funds (sometimes called “financial capital”) that finance purchases of physical
capital.

By a household’s wealth (sometimes denoted net wealth), W, we mean the
value of the total stock of real as well as financial resources, possessed by the
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household at a given point in time. This wealth generally has two main compo-
nents, the human wealth, which is the present value of the expected stream of
future labor income,* and the non-human wealth. The latter is the sum of the
value of the household’s physical assets (also called real assets) and its net finan-
ctal assets. Typically, housing wealth is the dominating component in households’
physical assets. By net financial assets is meant the difference between the value
of financial assets and the value of financial liabilities. Financial assets include
cash as well as paper claims that entitles the owner to future transfers from the
issuer of the claim, perhaps conditional on certain events. Bonds and shares of
stock are examples. A financial liability of an economic agent is an obligation to
transfer resources to others in the future. A mortgage loan is an example.

In spite of the described distinction between what is called physical assets and
what is called financial assets, often in macroeconomics the household’s “financial
wealth” is used as synonymous with its non-human wealth. In this book, unless
otherwise indicated, we follow this convention. Thereby, a household’s financial
wealth is the total value of its non-human assets, thus including not only its net
financial assets, but also its physical assets like land, house, car, machines, and
other equipment.

Somewhat at odds with this convention, macroeconomics (including this book)
generally uses “investment” as synonymous with “physical capital investment”,
that is, procurement of new machines and plants by firms and new houses or
apartments by households. Then, when having purchases of financial assets in
mind, macroeconomists talk of financial investment.

Saving (flow) versus savings (stock).

1.5 Brief history of macroeconomics

Text not yet available.

?

1.6 Literature notes

4And is thus to be distinguished from human capital, which, as defined in Section 2.1, is a
production factor.
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The modern theory of economic growth (“new growth theory”, “endogenous
growth theory”) is extensively covered in dedicated textbooks like ?, 7, 7. 7, and
?. A good introduction to analytical development economics is Basu (1997).

?, 7, and 7 present useful overviews of the history of macroeconomics. For
surveys on recent developments on the research agenda within theory as well as
practical policy analysis, see 7, 7, and 7. Somewhat different perspectives, from
opposite poles, are offered by ? and ?.
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Chapter 2

Review of technology and firms

The aim of this chapter is threefold. First, we shall introduce this book’s vocabu-
lary concerning firms’ technology and technological change. Second, we shall re-
fresh our memory of key notions from microeconomics relating to firms’ behavior
and factor market equilibrium under simplifying assumptions, including perfect
competition. Finally, to prepare for the many cases where perfect competition
and other simplifying assumptions are not good approximations to reality, we
give an introduction to firms’ behavior under more realistic conditions including
monopolistic competition.

The vocabulary pertaining to other aspects of the economy, for instance house-
holds’ preferences and behavior, is better dealt with in close connection with the
specific models to be discussed in the subsequent chapters. Regarding the dis-
tinction between discrete and continuous time analysis, most of the definitions
contained in this chapter are applicable to both.

2.1 The production technology
Consider a two-input-one-output production function given by
Y =F(K, L), (2.1)

where Y is output (value added) per time unit, K is capital input per time unit,
and L is labor input per time unit (K > 0, L > 0). We may think of (2.1) as
describing the output of a firm, a sector, or the economy as a whole. It is in any
case a very simplified description, ignoring the heterogeneity of output, capital,
and labor. Yet, for many macroeconomic questions it may be useful in a first
approach.

Note that in (2.1) not only Y but also K and L represent flows, that is,
quantities per unit of time. If the time unit is one year, we think of K as

19
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measured in machine hours per year. Similarly, we think of L as measured in
labor hours per year. Unless otherwise specified, it is understood that the rate of
utilization of the production factors is constant over time and normalized to one
for each production factor. As explained in Chapter 1, we can then use the same
symbol, K, for the flow of capital services as for the stock of capital. Similarly
with L.

2.1.1 A neoclassical production function

By definition, Y, K and L are non-negative. It is generally understood that a
production function, Y = F(K, L), is continuous and that F'(0,0) = 0 (no input,
no output). Sometimes, when a production function is specified by a certain for-
mula, that formula may not be defined for K = 0 or L = 0 or both. In such a case
we adopt the convention that the domain of the function is understood extended
to include such boundary points whenever it is possible to assign function values
to them such that continuity is maintained. For instance the function F(K, L)
=alL+ BKL/(K+ L), where o > 0 and § > 0, is not defined at (K, L) = (0,0).
But by assigning the function value 0 to the point (0,0), we maintain both con-
tinuity and the “no input, no output” property.

We call the production function neoclassical if for all (K, L), with K > 0 and
L > 0, the following additional conditions are satisfied:

(a) F(K, L) has continuous first- and second-order partial derivatives satisfying:

Fx > 0, Fp, >0, (2.2)
Frrg < 0, Fpp <O.

(b) F(K, L) is strictly quasiconcave (i.e., the level curves, also called isoquants,
are strictly convex to the origin).

In words: (a) says that a neoclassical production function has continuous
substitution possibilities between K and L and the marginal productivities are
positive, but diminishing in own factor. Thus, for a given number of machines,
adding one more unit of labor, adds to output, but less so, the higher is already
the labor input. And (b) says that every isoquant, F(K, L) = Y, has a strictly
convex form qualitatively similar to that shown in Fig. 2.1.! When we speak
of for example F}, as the marginal productivity of labor, it is because the “pure”

'For any fixed Y > 0, the associated isoquant is the level set {(K,L) € Ry| F(K,L)=Y}.
A refresher on mathematical terms such as level set, boundary point, convex function, etc. is
contained in Math Tools.
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partial derivative, 0Y/OL = Fp, has the denomination of a productivity (out-
put units/yr)/(man-yrs/yr). It is quite common, however, to refer to F as the
marginal product of labor. Then a unit marginal increase in the labor input is
understood: AY =~ (0Y/OL)AL = 0Y/OL when AL = 1. Similarly, F can
be interpreted as the marginal productivity of capital or as the marginal prod-
uct of capital. In the latter case it is understood that AK = 1, so that AY
~ (0Y/OK)AK = 0Y/0K.

The definition of a neoclassical production function can be extended to the
case of n inputs. Let the input quantities be X, Xs5,...,X,, and consider a
production function Y = F(X;, Xs,...,X,,). Then F is called neoclassical if all
the marginal productivities are positive, but diminishing in own factor, and F' is
strictly quasiconcave (i.e., the upper contour sets are strictly convex, cf. Appendix
A). An example where n = 3 is Y = F(K, L, J), where J is land, an important
production factor in an agricultural economy.

Returning to the two-factor case, since F/(K, L) presumably depends on the
level of technical knowledge and this level depends on time, ¢, we may want to
replace (2.1) by

Yy = F(Ky, Ly, t), (2.4)

where the third argument indicates that the production function may shift over
time, due to changes in technology. We then say that F' is a neoclassical produc-
tion function if for all ¢ in a certain time interval it satisfies the conditions (a)
and (b) w.r.t its first two arguments. Technological progress can then be said to
occur when, for K; and L; held constant, output increases with ¢.

For convenience, to begin with we skip the explicit reference to time and level
of technology.

The marginal rate of substitution Given a neoclassical production function
F, we consider the isoquant defined by F(K, L) =Y, where Y is a positive con-
stant. The marginal rate of substitution, M RSk, of K for L at the point (K, L)
is defined as the absolute slope of the isoquant {(K,L) € R | F(K,L) =Y} at
that point, cf. Fig. 2.1. For some reason (unknown to this author) the tradition
in macroeconomics is to write Y = F(K, L) and in spite of ordering the argu-
ments of F' this way, nonetheless have K on the vertical and L on the horizontal
axis when considering an isoquant. At this point we follow the tradition.

The equation F(K,L) =Y defines K as an implicit function K = ¢(L) of L.
By implicit differentiation we get Fi (K, L)dK/dL +FL(K,L) = 0, from which
follows

dK , Fu(K, L

] 2.5
dL |y=y Fr(K, L) (2:5)
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So M RSk, equals the ratio of the marginal productivities of labor and capital,
respectively.? The economic interpretation of MRSk is that it indicates (ap-
proximately) how much of K can be saved by applying an extra unit of labor.
Hence, a cost-minimizing firm that plans to produce Y units, will choose inputs,
K and L, such that the marginal rate of substitution of K for L equals the inverse
factor price ratio.

Since F' is neoclassical, by definition F' is strictly quasi-concave and so the
marginal rate of substitution is diminishing as substitution proceeds, i.e., as the
labor input is further increased along a given isoquant. Notice that this feature
characterizes the marginal rate of substitution for any neoclassical production
function, whatever the returns to scale (see below).

| —MRS 1.
L

> L

Figure 2.1: M RSk as the absolute slope of the isoquant representing F(K,L) =Y.

When we want to draw attention to the dependency of the marginal rate
of substitution on the factor combination considered, we write M RSk (K, L).
Sometimes in the literature, the marginal rate of substitution between two pro-
duction factors, K and L, is called the technical rate of substitution (or the
technical rate of transformation) in order to distinguish from a consumer’s mar-
ginal rate of substitution between two consumption goods.

As is well-known from microeconomics, a firm that minimizes production costs
for a given output level and given factor prices, will choose a factor combination
such that M RSk, equals the ratio of the factor prices. If F'(K, L) is homogeneous
of degree ¢, then the marginal rate of substitution depends only on the factor
proportion and is thus the same at any point on the ray K = (K/L)L. In this
case the expansion path is a straight line.

_2The subscript ’Y =Y in (2.5) signifies that “we are moving along a given isoquant F (K, L)
=Y7, ie., we are considering the relation between K and L under the restriction F(K,L) =Y.
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The Inada conditions A continuously differentiable production function is
said to satisfy the Inada conditions® if

[l(imOFK(K, L)y = oo,lgim Fr(K,L) =0, (2.6)
%in(ljFL(K, L)y = oo,Llim Fr(K,L)=0. (2.7)

In this case, the marginal productivity of either production factor has no upper
bound when the input of the factor becomes infinitely small. And the marginal
productivity is gradually vanishing when the input of the factor increases without
bound. Actually, (2.6) and (2.7) express four conditions, which it is preferable to
consider separately and label one by one. In (2.6) we have two Inada conditions
for MPK (the marginal productivity of capital), the first being a lower, the
second an upper Inada condition for M PK. And in (2.7) we have two Inada
conditions for M PL (the marginal productivity of labor), the first being a lower,
the second an upper Inada condition for M PL. In the literature, when a sentence
like “the Inada conditions are assumed” appears, it is sometimes not made clear
which, and how many, of the four are meant. Unless it is evident from the context,
it is better to be explicit about what is meant.

The definition of a neoclassical production function we have given is quite
common in macroeconomic journal articles and convenient because of its flexibil-
ity. Yet there are textbooks that define a neoclassical production function more
narrowly by including the Inada conditions as a requirement for calling the pro-
duction function neoclassical. In contrast, in this book, when in a given context
we need one or another Inada condition, we state it explicitly as an additional
assumption.

2.1.2 Returns to scale

If all the inputs are multiplied by some factor, is output then multiplied by the
same factor? There may be different answers to this question, depending on
circumstances. We consider a production function F'(K, L) where K > 0 and
L > 0. Then F is said to have constant returns to scale (CRS for short) if it is
homogeneous of degree one, i.e., if for all (K,L) € R2, and all A > 0,

F(AK,\L) = AF(K, L).

As all inputs are scaled up or down by some factor, output is scaled up or down
by the same factor.? The assumption of CRS is often defended by the replication

3 After the Japanese economist Ken-Ichi Inada, 1925-2002.
4In their definition of a neoclassical production function some textbooks add constant re-
turns to scale as a requirement besides (a) and (b) above. This book follows the alternative
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argument saying that “by doubling all inputs we are always able to double the
output since we are essentially just replicating a viable production activity”.
Before discussing this argument, lets us define the two alternative “pure” cases.

The production function F'(K, L) is said to have increasing returns to scale
(IRS for short) if, for all (K,L) € R2, and all A > 1,

F(AK,\L) > AF(K, L).

That is, IRS is present if, when increasing the scale of operations by scaling up
every input by some factor > 1, output is scaled up by more than this factor. One
argument for the plausibility of this is the presence of equipment indivisibilities
leading to high unit costs at low output levels. Another argument is that gains
by specialization and division of labor, synergy effects, etc. may be present, at
least up to a certain level of production. The IRS assumption is also called the
economies of scale assumption.

Another possibility is decreasing returns to scale (DRS). This is said to occur
when for all (K,L) € R2, and all A > 1,

F(AK,AL) < AF(K, L).

That is, DRS is present if, when all inputs are scaled up by some factor, output
is scaled up by less than this factor. This assumption is also called the disec-
onomies of scale assumption. The underlying hypothesis may be that control and
coordination problems confine the expansion of size. Or, considering the “repli-
cation argument” below, DRS may simply reflect that behind the scene there
is an additional production factor, for example land or a irreplaceable quality
of management, which is tacitly held fixed, when the factors of production are
varied.

EXAMPLE 1 The production function
Y = AK“L?, A>00<a<1,0<p<]1, (2.8)

where A, a, and § are given parameters, is called a Cobb-Douglas production
function. The parameter A depends on the choice of measurement units; for a
given such choice it reflects efficiency, also called the “total factor productivity”.
Exercise 2.2 asks the reader to verify that (2.8) satisfies (a) and (b) above and
is therefore a neoclassical production function. The function is homogeneous of
degree oo + 3. If a + f = 1, there are CRS. If a + 8 < 1, there are DRS, and if

terminology where, if in a given context an assumption of constant returns to scale is needed,
this is stated as an additional assumption and we talk about a CRS-neoclassical production
function.
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a+ 3 > 1, there are IRS. Note that o and 3 must be less than 1 in order not to
violate the diminishing marginal productivity condition. [

EXAMPLE 2 The production function
Y =AlaK’+(1-a)LP]7, (2.9)

where A, o, and [ are parameters satisfying A > 0,0 < a < 1,and § < 1, 5 # 0,
is called a CES production function (CES for Constant Elasticity of Substitution).
For a given choice of measurement units, the parameter A reflects efficiency (or
“total factor productivity”) and is thus called the efficiency parameter. The
parameters « and [ are called the distribution parameter and the substitution
parameter, respectively. The latter name comes from the property that the higher
is (8, the more sensitive is the cost-minimizing capital-labor ratio to a rise in
the relative factor price. Equation (2.9) gives the CES function for the case of
constant returns to scale; the cases of increasing or decreasing returns to scale
are presented in Chapter 4.5. A limiting case of the CES function (2.9) gives the
Cobb-Douglas function with CRS. Indeed, for fixed K and L,

lim A [aK? + (1 —a)L’]7 = AK“L'™.
This and other properties of the CES function are shown in Chapter 4.5. The
CES function has been used intensively in empirical studies. [J

EXAMPLE 3 The production function
Y =min(AK,BL), A>0,B>0, (2.10)

where A and B are given parameters, is called a Leontief production function®
(or a fized-coefficients production function; A and B are called the technical coef-
ficients. The function is not neoclassical, since the conditions (a) and (b) are not
satisfied. Indeed, with this production function the production factors are not
substitutable at all. This case is also known as the case of perfect complementarity
between the production factors. The interpretation is that already installed pro-
duction equipment requires a fixed number of workers to operate it. The inverse
of the parameters A and B indicate the required capital input per unit of output
and the required labor input per unit of output, respectively. Extended to many
inputs, this type of production function is often used in multi-sector input-output
models (also called Leontief models). In aggregate analysis neoclassical produc-
tion functions, allowing substitution between capital and labor, are more popular

® After the Russian-American economist and Nobel laureate Wassily Leontief (1906-99) who
used a generalized version of this type of production function in what is known as input-output
analysis.
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than Leontief functions. But sometimes the latter are preferred, in particular in
short-run analysis with focus on the use of already installed equipment where the
substitution possibilities tend to be limited.® As (2.10) reads, the function has
CRS. A generalized form of the Leontief function is Y = min(AK", BL"), where
v > 0. When v < 1, there are DRS, and when ~ > 1, there are IRS. [

The replication argument The assumption of CRS is widely used in macro-
economics. The model builder may appeal to the replication argument. This is
the argument saying that by doubling all the inputs, we should always be able
to double the output, since we are just “replicating” what we are already doing.
Suppose we want to double the production of cars. We may then build another
factory identical to the one we already have, man it with identical workers and
deploy the same material inputs. Then it is reasonable to assume output is dou-
bled.

In this context it is important that the CRS assumption is about technology,
functions linking outputs to inputs. Limits to the availability of input resources
is an entirely different matter. The fact that for example managerial talent may
be in limited supply does not preclude the thought experiment that if a firm
could double all its inputs, including the number of talented managers, then the
output level could also be doubled.

The replication argument presupposes, first, that all the relevant inputs are
explicit as arguments in the production function. Second, that these are changed
equiproportionately. This exhibits a problem in defending CRS of our present
production function, F, by an appeal to the replication argument. Besides capi-
tal and labor, also land is a necessary input and should in principle appear as a
separate argument.” If an industrial firm decides to duplicate what it has been
doing, it needs a piece of land to build another plant like the first. Then, on
the basis of the replication argument, we should in fact expect DRS with respect
to capital and labor alone. In manufacturing and services, empirically, this and
other possible sources for departure from CRS with respect to capital and labor
may be minor and so many macroeconomists feel comfortable enough with as-
suming CRS with respect to K and L alone, at least as a first approximation.
This approximation is, however, less applicable to poor countries, where natural
resources may be a quantitatively important production factor.

There is a further problem with the replication argument. By definition, CRS
is present if and only if, by changing all the inputs equiproportionately by any
positive factor A (not necessarily an integer), the firm is able to get output changed

6Cf. Section 2.5.2.
"Recall from Chapter 1 that we think of “capital” as producible means of production, whereas
“land” refers to non-producible natural resources, including for instance building sites.
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by the same factor. Hence, the replication argument requires that indivisibilities
are negligible, which is certainly not always the case. In fact, the replication
argument is more an argument against DRS than for CRS in particular. The
argument does not rule out IRS due to synergy effects as scale is increased.
Sometimes the replication line of reasoning is given a more subtle form. This
builds on a useful local measure of returns to scale, named the elasticity of scale.

The elasticity of scale*® To allow for indivisibilities and mixed cases (for
example IRS at low levels of production and CRS or DRS at higher levels),
we need a local measure of returns to scale. One defines the elasticity of scale,
n(K, L), of a differentiable production function F'(K, L) at the point (K, L), where
F(K,L) >0, as

A dF(AK,AL) AF(\K,\L)/F(K,L)
F(K,L) d\ - AN

n(K, L) = , evaluated at A = 1.

(2.11)
So the elasticity of scale at a point (K, L) indicates the (approximate) percentage
increase in output when both inputs are increased by 1 percent. We say that

> 1, then there are locally IRS,
if (K, L)q =1, then there are locally CRS, (2.12)
< 1, then there are locally DRS.

The production function may have the same elasticity of scale everywhere. This
is the case if and only if the production function is homogeneous of some degree
h > 0. In that case n(K,L) = h for all (K, L) for which F(K,L) > 0, and h
indicates the global elasticity of scale. The Cobb-Douglas function, cf. Example
1, is homogeneous of degree o+ 8 and has thereby global elasticity of scale equal
to a + .

Note that the elasticity of scale at a point (K, L) will always equal the sum
of the partial output elasticities at that point:

Fr(K,L)K  F.(K,L)L
F(K, L) F(K,L)

n(K, L) = (2.13)

This follows from the definition in (2.11) by taking into account that

dF(\K, AL)

o = Fr(AK,AL)K + FL(AK,\L)L

= Fx(K,L)K + F(K, L)L, when evaluated at A = 1.

8 A section headline marked by * indicates that in a first reading the section can be skipped
— or at least just skimmed through.
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Fig. 2.2 illustrates a popular case from introductory economics, an average
cost curve which from the perspective of the individual firm is U-shaped: at low
levels of output there are falling average costs (thus IRS), at higher levels rising
average costs (thus DRS).” Given the input prices wx and wy and a specified
output level F(K, L) =Y, we know that the cost-minimizing factor combination
(K, L) is such that Fp(K,L)/Fx(K,L) = wy/wg. It is shown in Appendix A
that the elasticity of scale at (K, L) will satisfy:

LAC(Y)

n(K,L) = LAC) (2.14)

where LAC(Y') is average costs (the minimum unit cost associated with producing
Y) and LMC(Y) is marginal costs at the output level Y. The L in LAC and
LMC stands for “long-run”, indicating that both capital and labor are considered
variable production factors within the period considered. At the optimal plant
size, Y*, there is equality between LAC and LMC, implying a unit elasticity
of scale. That is, locally we have CRS. That the long-run average costs are
here portrayed as rising for Y > Y, is not essential for the argument but may
reflect either that coordination difficulties are inevitable or that some additional
production factor, say the building site of the plant, is tacitly held fixed.

LMC(Y) LAC(Y)

A\
~|

Y+

Figure 2.2: Locally CRS at optimal plant size.

Anyway, on this basis Robert Solow (1956) came up with a more subtle repli-
cation argument for CRS at the aggregate level. Even though technologies may
differ across plants, the surviving plants in a competitive market will have the
same average costs at the optimal plant size. In the medium and long run, changes
in aggregate output will take place primarily by entry and exit of optimal-size

9By a “firm” is generally meant the company as a whole. A company may have several
“manufacturing plants” placed at different locations.
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plants. Then, with a large number of relatively small plants, each producing at
approximately constant unit costs for small output variations, we can without
substantial error assume constant returns to scale at the aggregate level. So the
argument goes. Notice, however, that even in this form the replication argument
is not entirely convincing since the question of indivisibility remains. The opti-
mal, i.e., cost-minimizing, plant size may be large relative to the market — and
is in fact so in many industries. Besides, in this case also the perfect competition
premise breaks down.

2.1.3 Properties of the production function under CRS

The empirical evidence concerning returns to scale is mixed (see the literature
notes at the end of the chapter). Notwithstanding the theoretical and empirical
ambiguities, the assumption of CRS with respect to capital and labor has a promi-
nent role in macroeconomics. In many contexts it is regarded as an acceptable
approximation and a convenient simple background for studying the question at
hand.

Expedient inferences of the CRS assumption include:

(i) marginal costs are constant and equal to average costs (so the right-hand
side of (2.14) equals unity);

ii) if production factors are paid according to their marginal productivities,

ii) if production fact id ding to thei ginal ductiviti
factor payments exactly exhaust total output so that pure profits are neither
positive nor negative (so the right-hand side of (2.13) equals unity);

(iii) a production function known to exhibit CRS and satisfy property (a) from
the definition of a neoclassical production function above, will automatically
satisfy also property (b) and consequently be neoclassical;

(iv) a neoclassical two-factor production function with CRS has, for all (K, L) €
R% ., Fgr > 0, ie., it exhibits direct complementarity between K and
L.What is ruled out in the CRS case is thus that Fx; < 0 (in which case
K and L are said to be direct substitutes), or that F = 0.

(v) a two-factor production function that has CRS and is twice continuously
differentiable with positive marginal productivity of each factor everywhere
in such a way that all isoquants are strictly convex to the origin, must have
diminishing marginal productivities everywhere and thereby be neoclassi-
cal.t®

Proofs of claim (iii), (iv), and (v) are in Appendix B.
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A principal implication of the CRS assumption is that it allows a reduction
of dimensionality. Considering a neoclassical production function, Y = F(K, L)
with L > 0, we can under CRS write F'(K,L) = LF(K/L,1) = Lf(k), where
k = K/L is called the capital-labor ratio (sometimes the capital intensity) and
f (k) is the production function in intensive form (sometimes named the per capita
production function). Thus output per unit of labor depends only on the capital
intensity: v

Y= A f(k).

When the original production function F' is neoclassical, under CRS the expres-
sion for the marginal productivity of capital simplifies:

oY _O[LIW] _ o Ok
o= P L) = (R, (2.15)

Fx(K,L)=

And the marginal productivity of labor can be written

FrL(K,L) = %:%:f@)ﬁ'ljl(l@)g—]z

= f(k)+ L (R)K(=L7%) = f(k) = kf'(k). (2.16)

A neoclassical CRS production function in intensive form always has a positive
first derivative and a negative second derivative, i.e., f/ > 0 and f” < 0. The
property f’ > 0 follows from (2.15) and (2.2). And the property f” < 0 follows
from (2.3) combined with

of'(k)
0K

ok . 1
=)y

Frxr(K,L) = i

= f"(k)

For a neoclassical production function with CRS, we also have

F(k) — (k) > 0 for all k > 0, (2.17)

in view of f(0) > 0 and f” < 0. Moreover,

lim [(k) ~ (k] = £(0). (2.18)
Indeed, from the mean value theorem'' we know that for any k& > 0 there exists
a number a € (0,1) such that f'(ak) = (f(k) — f(0))/k. For this a we thus have
f(k) — f'(ak)k = f(0) < f(k) — kf'(k), where the inequality follows from f'(ak)
> f'(k), by f” < 0. In view of f(0) > 0, this establishes (2.17). And from f(k)

"'This theorem says that if f is continuous in [a, 8] and differentiable in («, 3), then there
exists at least one point v in («, 8) such that f'(v) = (f(8) — f(a))/(8 — ).
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> f(k)—Ekf'(k) > f(0) and continuity of f (so that limy .o+ f(k) = f(0)) follows
(2.18).
Under CRS the Inada conditions for M PK can be written

. ’ . !
kli%{r f'(k) = oo, kh_)Iilof (k) =0. (2.19)
In this case standard parlance is just to say that “f satisfies the Inada conditions”.

An input which must be positive for positive output to arise is called an
essential input; an input which is not essential is called an inessential input. The
second part of (2.19), representing the upper Inada condition for M PK under
CRS, has the implication that labor is an essential input; but capital need not
be, as the production function f(k) = a + bk/(1+ k), a > 0,b > 0, illustrates.
Similarly, under CRS the upper Inada condition for M PL implies that capital
is an essential input. These claims are proved in Appendix C. Combining these
results, when both the upper Inada conditions hold and CRS obtain, then both
capital and labor are essential inputs.!?

Fig. 2.3 is drawn to provide an intuitive understanding of a neoclassical
CRS production function and at the same time illustrate that the lower Inada
conditions are more questionable than the upper Inada conditions. The left panel
of Fig. 2.3 shows output per unit of labor for a CRS neoclassical production
function satisfying the Inada conditions for M PK. The f(k) in the diagram
could for instance represent the Cobb-Douglas function in Example 1 with g =
1 — q, ie., f(k) = Ak The right panel of Fig. 2.3 shows a non-neoclassical
case where only two alternative Leontief techniques are available, technique 1: y
= min(A;k, By), and technique 2: y = min(Ask, B2). In the exposed case it is
assumed that By > B; and Ay < Ay (if A2 > A; at the same time as By > By,
technique 1 would not be efficient, because the same output could be obtained
with less input of at least one of the factors by shifting to technique 2). If the
available K and L are such that k = K/L < By/A; or k > By /A, some of either
L or K, respectively, is idle. If, however, the available K and L are such that
Bi/A1 < k < By/Ay, it is efficient to combine the two techniques and use the
fraction p of K and L in technique 1 and the remainder in technique 2, where
= (Bg/As — k)/(By/Ay — B1/A1). In this way we get the “labor productivity
curve” OPQR (the envelope of the two techniques) in Fig. 2.3. Note that for
k — 0, M PK stays equal to A; < oo, whereas for all k > By /Ay, MPK = 0.

A similar feature remains true, when we consider many, say n, alternative
efficient Leontief techniques available. Assuming these techniques cover a consid-
erable range with respect to the B/A ratios, we get a labor productivity curve

12Given a Cobb-Douglas production function, both production factors are essential whether
we have DRS, CRS, or IRS.
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Figure 2.3: Two labor productivity curves based on CRS technologies. Left: neoclas-
sical technology with Inada conditions for MPK satisfied; the graphical representation
of MPK and MPL at k = ko as f'(ko) and f(ko) — f'(ko)ko are indicated. Right: the
line segment PQ makes up an efficient combination of two efficient Leontief techniques.

looking more like that of a neoclassical CRS production function. On the one
hand, this gives some intuition of what lies behind the assumption of a neoclas-
sical CRS production function. On the other hand, it remains true that for all
k > B,/A,, MPK = 0,'® whereas for k — 0, M PK stays equal to A; < oo, thus
questioning the lower Inada condition.

The implausibility of the lower Inada conditions is also underlined if we look
at their implication in combination with the more reasonable upper Inada condi-
tions. Indeed, the four Inada conditions taken together imply, under CRS, that
output has no upper bound when either input goes towards infinity for fixed
amount of the other input (see Appendix C).

2.2 Technological change

When considering the movement over time of the economy, we shall often take
into account the existence of technological change. When technological change
occurs, the production function becomes time-dependent. Over time the produc-
tion factors tend to become more productive: more output for given inputs. To
put it differently: the isoquants move inward. When this is the case, we say that
the technological change displays technological progress.

Concepts of neutral technological change

A first step in taking technological change into account is to replace (2.1) by
(2.4). Empirical studies often specialize (2.4) by assuming that technological

13Here we assume the techniques are numbered according to ranking with respect to the size
of B.
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change take a form known as factor-augmenting technological change:
}/;5 — F(Bth, AtLt)7 (220)

where F' is a (time-independent) neoclassical production function, Y;, K;, and
L, are output, capital, and labor input, respectively, at time ¢, while B; and
A, are time-dependent “efficiencies” of capital and labor, respectively, reflecting
technological change.

In macroeconomics an even more specific form is often assumed, namely the
form of Harrod-neutral technological change.'* This amounts to assuming that B,
in (2.20) is a constant (which we can then normalize to one). So only A;, which
is then conveniently denoted T3, is changing over time, and we have

The efficiency of labor, T}, is then said to indicate the technology level. Although
one can imagine natural disasters implying a fall in T}, generally T, tends to rise
over time and then we say that (2.21) represents Harrod-neutral technological
progress. An alternative name often used for this is labor-augmenting technolog-
ical progress. The names “factor-augmenting” and, as here, “labor-augmenting”
have become standard and we shall use them when convenient, although they
may easily be misunderstood. To say that a change in 7} is labor-augmenting
might be understood as meaning that more labor is required to reach a given
output level for given capital. In fact, the opposite is the case, namely that T;
has risen so that less labor input is required. The idea is that the technological
change affects the output level as if the labor input had been increased exactly
by the factor by which 7" was increased, and nothing else had happened. (We
might be tempted to say that (2.21) reflects “labor saving” technological change.
But also this can be misunderstood. Indeed, keeping L unchanged in response to
a rise in 1" implies that the same output level requires less capital and thus the
technological change is “capital saving”.)

If the function F' in (2.21) is homogeneous of degree one (so that the technol-
ogy exhibits CRS with respect to capital and labor), we may write

L
T,L,

Ky
TiLi

i = F(zom 1) = F(kn1) = f(k),  f'>0.f"<0.

where k;, = K, J(TyL;) = k¢/T; (habitually called the “effective” capital-labor ra-
tio or capital intensity). In rough accordance with a general trend in aggregate
productivity data for industrialized countries we often assume that 7" grows at

a constant rate, g, so that in discrete time T, = Ty(1 + ¢g)' and in continuous

14 After the English economist Roy F. Harrod, 1900-1978.
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time T; = Tyed, where g > 0. The popularity in macroeconomics of the hypoth-
esis of labor-augmenting technological progress derives from its consistency with
Kaldor’s “stylized facts”, cf. Chapter 4.

There exists two alternative concepts of neutral technological progress. Hicks-
neutral technological progress is said to occur if technological development is such
that the production function can be written in the form

}/t - TtF(Kt, Lt)7 (222)

where, again, F' is a (time-independent) neoclassical production function, while
T; is the growing technology level.!® The assumption of Hicks-neutrality has been
used more in microeconomics and partial equilibrium analysis than in macroeco-
nomics. If F' has CRS, we can write (2.22) as Y; = F(1;K;,T;L;). Comparing
with (2.20), we see that in this case Hicks-neutrality is equivalent to B, = A; in
(2.20), whereby technological change is said to be equally factor-augmenting.
Finally, in a symmetric analogy with (2.21), what is known as capital-augmenting

technological progress is present when

Yy = F(T1Ky, Ly). (2.23)

Here technological change acts as if the capital input were augmented. For some
obscure reason this form became known as Solow-neutral technological progress.'
This association of (2.23) to Solow’s name may easily confuse people, however.
In his famous growth model,!” well-known from introductory macroeconomics,
Solow assumed Harrod-neutral technological progress. And in another famous
contribution, Solow generalized the concept of Harrod-neutrality to the case of
embodied technological change and capital of different vintages, see below.

It is easily shown (Exercise 2.5) that if " in (2.20) is a Cobb-Douglas produc-
tion function, then F' satisfies all three neutrality criteria at the same time, if it
satisfies one of them (which requires that technological change does not affect «
and (). It can also be shown that within the class of neoclassical CRS produc-
tion functions the Cobb-Douglas function is the only one with this property (see
Exercise 4.77).

Note that the neutrality concepts do not say anything about the source of
technological progress, only about the quantitative way in which it materializes.
For instance, the occurrence of Harrod-neutrality should not be interpreted as
if something miraculous has happened to the labor input. It only means that
technological innovations predominantly are such that not only do labor and

15 After the English economist and Nobel Prize laureate John R. Hicks, 1904-1989.
16 After the American economist and Nobel Prize laureate Robert Solow (1924-).
17Solow (1956).
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capital in combination become more productive, but this happens to manifest
itself in the form (2.21), that is, as if an improvement in the quality of the labor
input had occurred. (Even when improvement in the quality of the labor input
is on the agenda, the result may be a reorganization of the production process
ending up in a higher B; along with, or instead of, a higher A; in the expression

(2.20).)

Rival versus nonrival goods

When a production function (or more generally a production possibility set) is
specified, a given level of technical knowledge is presumed. As this level changes
over time, the production function changes. In (2.4) this dependency on the level
of knowledge was represented indirectly by the time dependency of the production
function. Sometimes it is useful to let the knowledge dependency be explicit by
perceiving knowledge as an additional production factor and write, for instance,

Y, = F(X, Th), (2.24)

where T; is now an index of the amount of knowledge, while X, is a vector
of ordinary inputs like raw materials, machines, labor etc. In this context the
distinction between rival and nonrival inputs or more generally the distinction
between rival and nonrival goods is important. A good is riwval if its character is
such that one agent’s use of it inhibits other agents’ use of it at the same time. A
pencil is thus rival. Many production inputs like raw materials, machines, labor
etc. have this property. They are elements of the vector X;. By contrast, how-
ever, technical knowledge is a nonrival good. An arbitrary number of factories
can simultaneously use the same piece of technical knowledge in the sense of a
list of instructions about how different inputs can be combined to produce a cer-
tain output. An engineering principle or a pharmaceutical formula are examples.
(Note that the distinction rival versus nonrival is different from the distinction
excludable versus nonexcludable. A good is excludable if other agents, firms or
households, can be excluded from using it. Other firms can thus be excluded
from commercial use of a certain piece of technical knowledge if it is patented.
The existence of a patent has to do with the legal status of a piece of knowledge
and does not interfere with its technical character as a nonrival input. Finally, a
good that is both non-rival and non-excludable is called a pure public good.)
What the replication argument really says is that by, conceptually, doubling
all the rival inputs, we should always be able to double the output, since we just
“replicate” what we are already doing. This is then an argument for (at least)
CRS with respect to the elements of X; in (2.24). The point is that because of its
nonrivalry, we do not need to increase the stock of knowledge. Now let us imagine
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that the stock of knowledge is doubled at the same time as the rival inputs are
doubled. Then more than a doubling of output should occur. In this sense we
may speak of IRS with respect to the rival inputs and 7" taken together.

From the perspective of the theory of economic growth, the important distinc-
tion between a rival and a non-rival input can be exemplified this way. Adding a
new tractor to the economy benefits one farmer. But adding a new idea — a new
piece of technical knowledge — benefits everyone that wants to use it. In brief:
the economic value of an idea is proportional to the number of users.

The perpetual inventory method

Before proceeding, a brief remark about how the capital stock K; can be in
principle measured While data on gross investment, [;, is typically available in
official national income and product accounts, data on K; usually is not. It has
been up to researchers and research institutions to make their own time-series
for capital. One approach to the measurement of K; is the perpetual inventory
method which builds upon the accounting relationship

Kt = It,1 -+ (1 - 5)Kt,1. (225)

Assuming a constant capital depreciation rate 9, backward substitution gives

N
Ki=T+(1-0) L2+ (1-0)K o]=... =Y (1-6)""Li+(1-0)"K_y.
=1

(2.26)
Based on a long time series for / and an estimate of , one can insert these
observed values in the formula and calculate K;, starting from a rough conjec-
ture about the initial value K;_ x. The result will not be very sensitive to this
conjecture since for large N the last term in (2.26) becomes very small.

Embodied versus disembodied technological progress*

An additional taxonomy of technological change is the following. We say that
technological change is embodied, if taking advantage of new technical knowledge
requires construction of new investment goods. The new technology is incorpo-
rated in the design of newly produced equipment, but this equipment will not
participate in subsequent technological progress. An example: only the most
recent vintage of a computer series incorporates the most recent advance in in-
formation technology. Then investment goods produced later (investment goods
of a later “vintage”) have higher productivity than investment goods produced
earlier at the same resource cost. Thus investment becomes an important driving
force in productivity increases.

© Groth, Lecture notes in macroeconomics, (mimeo) 2016.



2.2. Technological change 37

We may formalize embodied technological progress by writing capital accu-
mulation in the following way:

Kt+1 — K = Qt]t - 5Kta (2-27)

where [; is gross investment in period t, i.e., I[; = Y; — C}, and ); measures the
“quality” (productivity) of newly produced investment goods. The rising level
of technology implies rising ) so that a given level of investment gives rise to
a greater and greater addition to the capital stock, K, measured in efficiency
units. In aggregate models C' and I are produced with the same technology, the
aggregate production function. From this together with (2.27) follows that @
capital goods can be produced at the same minimum cost as one consumption
good. Hence, the equilibrium price, p, of capital goods in terms of the consump-
tion good must equal the inverse of @, i.e., p = 1/Q. The output-capital ratio in
value terms is Y/(pK) = QY/K.

Note that even if technological change does not directly appear in the produc-
tion function, that is, even if for instance (2.21) is replaced by Y; = F(Ky, L;),
the economy may experience a rising standard of living when () is growing over
time.

In contrast, disembodied technological change occurs when new technical and
organizational knowledge increases the combined productivity of the production
factors independently of when they were constructed or educated. If the K,
appearing in (2.21), (2.22), and (2.23) above refers to the total, historically ac-
cumulated capital stock as calculated by (2.26), then the evolution of T" in these
expressions can be seen as representing disembodied technological change. All
vintages of the capital equipment benefit from a rise in the technology level T;.
No new investment is needed to benefit.

Based on data for the U.S. 1950-1990, and taking quality improvements into
account, Greenwood et al. (1997) estimate that embodied technological progress
explains about 60% of the growth in output per man hour. So, empirically,
embodied technological progress seems to play a dominant role. As this tends not
to be fully incorporated in national income accounting at fixed prices, there is
a need to adjust the investment levels in (2.26) to better take estimated quality
improvements into account. Otherwise the resulting K will not indicate the
capital stock measured in efficiency units.

For most issues dealt with in this book the distinction between embodied and
disembodied technological progress is not of high importance. Hence, unless ex-
plicitly specified otherwise, technological change is understood to be disembodied.
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2.3 The concepts of representative firm and ag-
gregate production function

Many macroeconomic models make use of the simplifying, and not unproblematic,
notion of a representative firm. By this is meant a fictional firm whose production
“represents” the aggregate production (value added) in a sector or in society as
a whole.

Suppose there are n firms in the sector considered or in society as a whole.
Let F* be the production function for firm ¢ so that Y; = F'(K;, L;), where Y;, K;,
and L; are output, capital input, and labor input, respectively, : = 1,2,...,n.
Define Y = ¥V, K = ¥ |K;, and L = X! |L;. Let the firms maximize
profits, taking input and output prices as given. Suppose the aggregate variables
are then related through some function, F™*, such that we can write

Y = F*(K, L),

and such that the input choices of a single fictional firm facing this production
function coincide with the aggregate outcomes, X7 ,Y;, ¥ | K;, and ¥ | L;, in
the original economy. If this is possible, we call F*(K, L) the aggregate production
function or the production function of the representative firm. It is as if aggregate
production is the result of the behavior of this fictional single firm.

A simple example where an aggregate production function is well-defined is
the following. Suppose all the firms have the same production function so that
Y, = F(K;,L;),i=1,2,...,n. If in addition F" has CRS, we have

where k; = K;/L;. Hence, facing given the factor prices, profit-maximizing firms
will choose the same capital intensity k; = k for all ¢ (but not necessarily the same

level of production since under CRS, this is indeterminate ). From K; = kL; then
follows >, K; = k), L; so that k = K /L. Thence,

YEZYi:ZLif(/ﬂ‘) :f(k:)ZLZ-:f(k:)L:F(k,l)L:F(K,L).

In this case an aggregate production function immediately appears and turns
out to be exactly the same as the identical CRS production functions of the
individual firms. Moreover, given F' is neoclassical, the common capital-labor
ratio k; = k, for all ¢, implies that 0Y;/0K; = f'(k;) = f'(k) = Fg(K,L) =
JY/OK for all i. So each firm’s marginal productivity of capital is the same
as the marginal productivity of capital calculated on the basis of the aggregate
production function.
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A less trivial case is the following. Let the firms have different concave neo-
classical production functions at firm level. Define the function F' by

F(K,L) = max  FY(Ky, L)+ + F*(Kn, Ly) st
(K1,L1,...,Kn,Ln)>0

Y Ki < K, and » L <L

Then F(K, L) is a “well-behaved” aggregate production function. Indeed, the n
individual firms will choose inputs such that both 9Y;/0K; (= Fi(K;, L;) and
9Y;/OL; (= Fi(K;, L;) are the same across firms, namely equal to the cost per
unit of capital and the cost per unit of labor, respectively. By the envelope
theorem (see Math Tools) it can then be shown that F' will be such that 0Y /0K
= Fg (K, L) and 0Y/OL will equal 0Y;/0K; and 0Y;/0L;, respectively.

A next step is to allow also for the existence of different output goods (either
within or across the single firms), different capital goods, and different types of
labor. This makes the issue much more intricate, of course. Yet, if firms are price
taking profit maximizers and face nonincreasing returns to scale, we at least
know from microeconomics that the aggregate outcome is as if, for the given
prices, the aggregate profit is maximized on the basis of the firms’ combined
production technology.'®*The problem is, however, that the conditions needed
for this to imply existence of an aggregate production function which is “well-
behaved” (in the sense of inheriting at least simple qualitative properties from its
constituent parts) are very restrictive.

Nevertheless macroeconomics often treats aggregate output as a single homo-
geneous good and capital and labor as being two single and homogeneous inputs.
There was in the 1960s a heated debate about the problems involved in this,
with particular emphasis on the aggregation of different kinds of equipment into
one variable, the capital stock “K”. The debate is known as the “Cambridge
controversy” because the dispute was between a group of economists from Cam-
bridge University, UK, and a group from Massachusetts Institute of Technology
(MIT), which is located in Cambridge, USA. The former group questioned the
theoretical robustness of several of the neoclassical tenets, including the proposi-
tion that a lower rate of interest always induces a higher aggregate capital-labor
ratio. Starting at the disaggregate level, an association of this sort is not a log-
ical necessity because, with different production functions across the industries,
the relative prices of produced inputs tend to change, when the interest rate
changes. While acknowledging the possibility of “paradoxical” relationships, the
MIT group maintained that in a macroeconomic context they are likely to cause

18See Mas-Colell (1995).
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devastating problems only under exceptional circumstances. In the end this is a
matter of empirical assessment.”

To avoid complexity and because, for many important issues in macroeco-
nomics, there is today no well-tried alternative, this book is about models that
use aggregate constructs like “Y”, “K” and “L” as simplifying devices, assuming
they are, for a broad class of cases, tolerable in a first rough approximation. Of
course there are cases where this “as if” approach is clearly inappropriate and
some disaggregation is pertinent. When for example the role of imperfect compe-
tition is in focus, we shall be ready to (modestly) disaggregate the production side
of the economy into several product lines, each producing its own differentiated
product. A brief example is given in Section 2.5.3.

Like the representative firm, the representative household and the aggregate
consumption function are simplifying notions that should be applied only when
they do not get in the way of the issue to be studied. The role of budget con-
straints may make it even more difficult to aggregate over households than over
firms. Yet, if (and that is a big if) all households have the same constant propen-
sity to consume out of income or wealth, aggregation is straightforward and the
notion of a representative household may be a useful simplifying concept. On
the other hand, if we aim at understanding, say, the interaction between lending
and borrowing households, perhaps via financial intermediaries, the existence of
different categories of households should be taken into account. Similarly, if the
theme is conflicts of interests between firm owners and employees. And if we want
to assess the welfare costs of business cycle fluctuations, we should take into ac-
count that exposure to unemployment risk tends to be very unevenly distributed
in the population.

2.4 The neoclassical competitive one-sector setup

Many long-run macromodels, including those in the first chapters to follow, share
the same abstract setup regarding the firms and the market environment in which
they are placed. We give an account here which will serve as a reference point
for these later chapters.

The setup is characterized by the following simplifications:

(a) There is only one produced good, an all-purpose good that can be used for
consumption as well as investment. Aggregate physical capital is just the
accumulated amount of what is left of the produced good after aggregate

Tn his review of the Cambridge controversy Mas-Colell (1989) concluded that: “What the
‘paradoxical’ comparative statics [of disaggregate capital theory] has taught us is simply that
modelling the world as having a single capital good is not a priori justified. So be it.”
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consumption. Models using this simplification are called one-sector models.
One may think of “corn”, a good that can be used for consumption as well
as investment in the form of seed to yield corn next period.

(b) All firms are alike and maximize profit subject to the same neoclassical
production function under non-increasing returns to scale.

(c) Capital goods become productive immediately upon purchase or renting (so
installation costs and similar features are ignored).

(d) In all markets perfect competition rules. By definition this means that the
economic actors are price takers, perceiving no constraint on how much they
can sell or buy at the going market price. It is understood that market prices
are flexible and adjust quickly to levels required for market clearing.

(e) Factor supplies are inelastic.

(f) There is no uncertainty. When a choice of action is made, the consequences
are known.

We call this setup the neoclassical competitive one-sector setup. It is certainly
an abstraction from the diversity and multitude of frictions in the real world.
Nevertheless, the outcome under the described conditions is of theoretical interest.
Think of Galilei’s discovery that a falling body falls with a uniform acceleration
as long as it is falling through a perfect vacuum.

2.4.1 Profit maximization

We consider a single firm in a single period. The firm has the neoclassical pro-
duction function

Y = F(K, L), (2.28)

where technological change is ignored. Although in this book often CRS will be
assumed, we may throw the CRS outcome in relief by starting with a broader
view.

From microeconomics we know that equilibrium with perfect competition is
compatible with producers operating under the condition of locally nonincreasing
returns to scale (cf. Fig. 2.2). In standard macroeconomics it is common to
accept a lower level of generality and simply assume that F' is a concave function.
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This allows us to carry out the analysis as if there were non-increasing returns
to scale everywhere (see Appendix D).?

Since F' is neoclassical, we have Fxx < 0 and Fp;, < 0 everywhere. To obtain
concavity it is then necessary and sufficient to add the assumption that

D = Fxg(K,L)F(K,L) — Fxr(K,L)* >0, (2.29)

holds for all (K, L). This is a simple application of a general theorem on concave
functions (see Math Tools).

Let us consider both K and L as variable production factors. Let the factor
prices be denoted wx and wp, respectively. For the time being we assume the
firm rents the machines it uses; then the price, wg, of capital services is called
the rental price or the rental rate. As numeraire (unit of account) we apply the
output good. So all prices are measured in terms of the output good which itself
has the price 1. Then profit, defined as revenue minus costs, is

=FK,L) —wxK —w,L. (2.30)

We assume both production inputs are variable inputs. Taking the factor prices
as given from the factor markets, the firm’s problem is to choose (K, L), where
K > 0 and L > 0, so as to maximize II. An interior solution will satisfy the
first-order conditions

oIl

a_K = FK(K7L)—UJK:0 or FK<K,L):UJK, (231)
g—rL[ = FL(K,L)—ML:O or FL(K7L):U}L. (232)

Since F' is concave, so is the profit function. The first-order conditions are then
sufficient for (K, L) to be a solution.

It is now convenient to proceed by considering the two cases, DRS and CRS,
separately.

The DRS case

Suppose the production function satisfies (2.29) with strict inequality everywhere,
ie.,

D > 0.

20By definition, concavity means that by applying a weighted average of two factor combina-
tions, (K1, L;) and (Ks, Ls), the obtained output is at least as large as the weighted average
of the original outputs, Y7 and Y3. So, if 0 < A < 1 and (K, L) = A(K1,L1) +(1 — \)(K3, L),
then FI(K,L) > AF(Ky,L1) +(1 — \)F(Ka, Ls).
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In combination with the neoclassical property of diminishing marginal productiv-
ities, this implies that F' is strictly concave which in turn implies DRS everywhere.
The factor demands will now be unique. Indeed, the equations (2.31) and (2.32)
define the factor demands K¢ and L? (“d” for demand) as implicit functions of
the factor prices:

Kd:K(wK,wL), Ld:L(U}K,U)L).

An easy way to find the partial derivatives of these functions is to first take the
differential?! of both sides of (2.31) and (2.32), respectively:

FyrdK®+ Frpdl? = dwg,

FrgdK®+ Frpdl® = dwy,.
Then we interpret these conditions as a system of two linear equations with two
unknowns, the variables dK? and dL?. The determinant of the coefficient matrix

equals D in (2.29) and is in this case positive everywhere. Using Cramer’s rule
(see Math Tools), we find

FLLdU)K — FKLdU)L

K? =
d o) ,
de _ FKdeL — FLdeK
D Y
so that
8Kd FLL 8Kd FKL
_ fo 9 _TKL iR 0, (2.
Jun 5 <0, Jws D <0if Fgr, >0, (2.33)
8Ld FKL 8Ld FKK
= —_— .fF — 2' 4
D D <0i KL>0’_8wL D <0, (2.34)

in view of FLK = FKL~22
In contrast to the cases of CRS and IRS (for a two-factor production function),
here we cannot be sure that direct complementarity between K and L (i.e., Fx >

2IThe differential of a differentiable function is a convenient tool for deriving results like
(2.33) and (2.34). For a function of one variable, y = f(x), the differential is denoted dy (or df)
and is defined as f’(x)dx, where dx is some arbitrary real number (interpreted as the change in
x). For a differentiable function of two variables, z = g(x,y), the differential of the function is
denoted dz (or dg) and is defined as dz = g,(x, y)dz +g,(x, y)dy, where dz and dy are arbitrary
real numbers.

22 Applying the full content of the implicit function theorem (see Math tools), one could
directly have written down the results (2.33) and (2.34) and would not need the procedure
outlined here, based on differentials. On the other hand, the present procedure is probably
more intuitive and easier to remember.
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0) holds everywhere; this explains the “if” in (2.33) and (2.34). In any event, the
rule is that when a factor price increases, the demand for the factor in question
decreases and under direct complementarity also the demand for the other factor
will decrease. Although there is a substitution effect towards higher demand for
the factor whose price has not been increased, this is more than offset by the
negative output effect, which is due to the higher marginal costs. This is an
implication of perfect competition. In a different market structure output may
be determined from the demand side (think of a Keynesian short-run model) and
then only the substitution effect will be operative. An increase in one factor price
will then increase the demand for the other factor.

The CRS case
Under CRS, D in (2.29) takes the value

D=0

everywhere, as shown in Appendix B. Then the factor prices no longer determine
the factor demands uniquely. But the relative factor demand, k¢ = K9/L9, is
determined uniquely by the relative factor price, wy /wg. Indeed, by (2.31) and
(2.32),
FUK,L)  f(k)— ')k wy
= = =mrs(k) = —, 2.35
FK(K, L) f/(k’) ( ) WK ( )

where the second equality comes from (2.15) and (2.16). By straightforward

calculation, ., ., /
() — ) B/ E)
f'(k)? a(k)
where a(k) = kf'(k)/ f(k) is the elasticity of f with respect to k and the numer-
ator is the elasticity of f’ with respect to k. For instance, in the Cobb-Douglas
case f(k) = Ak®, we get mrs'(k) = (1 — a)/a. Given wy/wg, the last equa-
tion in (2.35) gives k¢ as an implicit function k% = k(wy /wg), where k' (wr/wg)
= 1/mrs'(k) > 0. The solution is illustrated in Fig. 2.4. Under CRS (indeed,
for any homogeneous neoclassical production function) the desired capital-labor
ratio is an increasing function of the inverse factor price ratio and independent
of the output level.

To determine K? and L¢ separately we need to know the level of output. And
here we run into the general problem of indeterminacy under perfect competition
combined with CRS. Saying that the output level is so as to maximize profit does
not take us far. If at the going factor prices attainable profit is negative, exit
from the market is profit maximizing (or rather loss minimizing), which amounts
to K% = L% = 0. But if the profit is positive, there will be no upper bound to the

MRS

>0,
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Figure 2.4: Constancy of MRS along rays when the production function is homogeneous
of degree h (the cost-minimizing capital intensity is the same at all output levels).

factor demands. Owing to CRS, doubling the factor inputs will double the profits
of a price taking firm. An equilibrium with positive production is only possible if
profit is zero. And then the firm is indifferent with respect to the level of output.
Solving the indeterminacy problem requires a look at the factor markets.

2.4.2 Clearing in factor markets

Considering a closed economy, we denote the available supplies of physical capital
and labor K* and L?, respectively, and assume these supplies are inelastic. With
respect to capital this is a “natural” assumption since in a closed economy in the
short run the available amount of capital will be predetermined, that is, histori-
cally determined by the accumulated previous investment in the economy. With
respect to labor supply it is just a simplifying assumption introduced because the
question about possible responses of labor supply to changes in factor prices is
a secondary issue in the present context. Since we now consider the aggregate
level, we interpret K¢ and L? as factor demands by a representative firm.
The factor markets clear when

K = K, (2.36)
LY = L°. (2.37)

Achieving this equilibrium (state of “rest”) requires that the factor prices adjust
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to their equilibrium levels, which are

WK = FK(K57L5>, (238)
wp, = FL(KS,LS), (239)

by (2.31) and (2.32). This says that in equilibrium the real factor prices are de-
termined by the marginal productivities of the respective factors at full utilization
of the given factor supplies. This holds under DRS as well as CRS. So, under
non-increasing returns to scale there is, at the macroeconomic level, a unique
equilibrium (wg,wr, K, LY) given by the above four equilibrium conditions for
the factor markets.?® It is an equilibrium in the sense that no agent has an
incentive to “deviate”.

As to comparative statics, since Fi < 0, a larger capital supply implies a
lower wg, and since Fp; < 0, a larger labor supply implies a lower wy.

The intuitive mechanism behind the attainment of equilibrium is that if for a
short moment wx < Fi(K*®, L*), then K¢ > K* and so competition between the
firms will generate an upward pressure on wy until equality is obtained. And if
for a short moment wx > F(K*, L*), then K¢ < K*® and so competition between
the suppliers of capital will generate a downward pressure on wg until equality
is obtained.

Looking more carefully at the matter, however, we see that this intuitive
reasoning fits at most the DRS case. In the CRS case we have F (K*®, L) = f(k*),
where k* = K*®/L*. Here we can only argue that for instance wx < F(K?®, L®)
implies k¢ > k*. And even if this leads to upward pressure on wy until k¢ = k*
is achieved, and even if both factor prices have obtained their equilibrium levels
given by (2.38) and (2.39), there is nothing to induce the representative firm (or
the many firms in the actual economy taken together) to choose the “right” input
levels so as to satisfy the clearing conditions (2.36) and (2.37). In this way the
indeterminacy under CRS pops up again, this time as a problem endangering
stability of the equilibrium.

Stability not guaranteed*®

To substantiate the point that the indeterminacy under CRS may endanger sta-
bility of competitive equilibrium, let us consider a Walrasian tdtonnement ad-
justment process.?* We imagine that our period is sub-divided into many short
time intervals (¢, t+ At). We still interpret K¢ and L? as factor demands per time
unit by a representative firm. In the initial short time interval the factor markets

23 At the microeconomic level, under CRS, industry structure remains indeterminate in that
firms are indifferent as to their size.
24 Tatonnement is a French word meaning “groping”.
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may not be in equilibrium. It is assumed that no capital or labor is hired out
of equilibrium. To allow an analysis in continuous time, we let At — 0. A dot
over a variable denotes the time derivative, i.e., @(t) = dx(t)/dt. The adjustment
process is the following:

= A [Fr(K(t), LUt) —wr(t)], A >0,
= Ao [FL(K%t), LYt)) —wr(t)], A2 >0,

where the initial values, K4(0), L%(0), wx(0), and wr(0), are given. The parame-
ters A\; and )y are constant adjustment speeds. The corresponding adjustment
speeds for the factor prices are set equal to one by choice of measurement units of
the inputs. Of course, the four endogenous variables should be constrained to be
nonnegative, but that is not important for the discussion here. The system has
a unique stationary state: K4(t) = K*, L(t) = L, wi(t) = Kx(K*, L®), w(t)
= Kp(K*, L*).

A widespread belief, even in otherwise well-informed circles, seems to be that
with such adjustment dynamics, the stationary state is at least locally asymptot-
ically stable. By this is meant that there exists a (possibly only small) neigh-
borhood, N, of the stationary state with the property that if the initial state,
(K40), L40), wg(0), wr(0)), belongs to A, then the solution (K%(t), L(t),
wg(t), wr(t)) converges to the stationary state for t — 0o?

Unfortunately, however, this stability property is not guaranteed. To bear
this out, it is enough to present a counterexample. Let F(K,L) = K %L%, A1
=)\ = K* = L* = 1, and suppose K¢(0) = L4(0) > 0 and wg(0) = w,(0) > 0.
All this symmetry implies that K%(t) = L4(t) = z(t) > 0 and wg(t) = wr(t)
=w(t) for all t > 0. So Fx (K(t), L4(t)) = 0.5x(t)"%%x(¢)>® = 0.5, and similarly
Fr(K%t), L4t)) = 0.5 for all + > 0. Now the system is equivalent to the two-
dimensional system,

#(t) = 0.5—w(t), (2.40)
w(t) = a(t) - 1. (2.41)

Using the theory of coupled linear differential equations, the solution is?

xz(t) = 14+ (x(0)—1)cost — (w(0) —0.5)sint, (2.42)
w(t) = 0.5+ (w(0) —0.5)cost + (x(0) — 1) sint. (2.43)

% For details, see hints in Exercise 2.6.
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The solution exhibits undamped oscillations and never settles down at the sta-
tionary state, (1,0.5), if not being there from the beginning. In fact, the solution
curves in the (x,w) plane will be circles around the stationary state. This is
so whatever the size of the initial distance, 1/(z(0) — 1)2 + (w(0) — 0.5), to the
stationary point.

The economic mechanism is as follows. Suppose for instance that z(0) < 1
and w(0) < 0.5. Then to begin with there is excess supply and so w will be falling
while, with w below marginal products, x will be increasing. When x reaches its
potential equilibrium value, 1, w is at its trough and so induces further increases
in the factor demands, thus bringing about a phase where x > 1. This excess
demand causes w to begin an upturn. When w reaches its potential equilibrium
value, 0.5, however, excess demand, x — 1, is at its peak and this induces further
increases in factor prices, w. This brings about a phase where w > 0.5 so that
factor prices exceed marginal products, which leads to declining factor demands.
But as x comes back to its potential equilibrium value, w is at its peak and drives
x further down. Thus excess supply arises which in turn triggers a downturn of w.
This continues in never ending oscillations where the overreaction of one variable
carries the seed to an overreaction of the other variable soon after and so on.

This possible outcome underlines that the theoretical existence of equilibrium
is one thing and stability of the equilibrium is another. In particular under CRS,
where demand functions for inputs are absent, the issue of stability can be more
intricate than one might at first glance think.

The link between capital costs and the interest rate*

Returning to the description of equilibrium, we shall comment on the relationship
between the factor price wx and the more everyday concept of an interest rate.
The factor price wg is the cost per unit of capital service. It has different names
in the literature such as the rental price, the rental rate, the unit capital cost, or
the user cost. It is related to the interest and depreciation costs that the owner of
the capital good in question defrays. In the simple neoclassical setup considered
here, it does not matter whether the firm rents the capital it uses or owns it;
in the latter case, wg, is the imputed capital cost, i.e., the forgone interest plus
depreciation.

As to depreciation it is common in macroeconomics to apply the approxima-
tion that, due to wear and tear, a constant fraction § (where 0 < § < 1) of a given
capital stock evaporates per period. If for instance the period length is one year
and § = 0.1, this means that a given machine in the next year has only the frac-
tion 0.9 of its productive capacity in the current year. Otherwise the productive
characteristics of a capital good are assumed to be the same whatever its time of
birth. Sometimes ¢ is referred to as the rate of physical capital depreciation or
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the rate of geometric decay.?® When changes in relative prices can occur, the rate
of decay must be distinguished from the economic depreciation of capital which
refers to the loss in economic value of a machine after one year.

Let p;_1 be the price of a certain type of machine bought at the end of period
t — 1. Let prices be expressed in the same numeraire as that in which the interest
rate, r, is measured. And let p; be the price of the same type of machine one
period later. Then the economic depreciation in period t is

DPt—1 — (1 - 5)pt = 0py — (pt - pt71>-

The economic depreciation thus equals the value of the physical wear and tear
minus the capital gain (positive or negative) on the machine. Note that if the
capital good itself is the numeraire, so that p;_1 = p; = 1, then the economic
depreciation coincides with the rate of geometric decay, 0.

By holding the machine the owner faces an opportunity cost, namely the
forgone interest on the value p;_; placed in the machine during period ¢. If r; is
the interest rate on a loan from the end of period ¢ — 1 to the end of period ¢, this
interest cost is 7;p;_1. The benefit of holding the (new) machine is that it can be
rented out to the representative firm and provide the return wg; at the end of
the period. Since there is no uncertainty, in equilibrium we must then have wg;

= 1pi—1 + O6py — (Pt — pe—1), or

Wit — 0Pt + Pt — Di—1
Pt—1

= (2.44)

This is a no-arbitrage condition saying that the rate of return on holding the
machine equals the rate of return obtainable in the loan market (no profitable
arbitrage opportunities are available).?’

In the simple setup considered so far, the capital good and the produced good
are physically identical and thus have the same price. As the produced good
is our numeraire, we have p; 1 = p; = 1. This has two implications. First, the
interest rate, 1y, is a real interest rate so that 1 4 r; measures the rate at which
future units of output can be traded for current units of output. Second, (2.44)
simplifies to

Wit — 0 = 7Ty,

26 The latter name comes from the fact that if no investment occurs, then K; = K1 — 6 K1
and thus K; = (1 — §)' K.

2In continuous time analysis the rental rate, the interest rate, and the price of the machine
are considered as differentiable functions of time, wg (¢), r(t), and p(t), respectively. In analogy
with (2.44) we then get wg (t) = (r(t) + §)p(t) — p(t), where p(t) denotes the time derivative of
the price p(t). Here ¢ appears as the rate of exponential decay, since, in case of no investment,
K(t) = 6K(t), hence K (t) = K(0)e %,
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Combining this with equation (2.38), we see that in the simple neoclassical setup
the equilibrium real interest rate is determined as

re = Fr(K7, L) — 0, (2.45)
where K and L$ are predetermined. Under CRS this takes the form r, = f/(kf)—

9, where kf = K7 /L.

We have assumed that the firms rent capital goods from their owners, presum-
ably the households. But as long as there is no uncertainty, no capital adjustment
costs, and no taxation, it will have no consequences for the results if instead we
assume that the firms own the physical capital they use and finance capital invest-
ment by issuing bonds or shares. Then such bonds and shares would constitute
financial assets, owned by the households and offering a rate of return r; as given

by (2.45).

2.5 More complex model structures*

The neoclassical setup described above may be useful as a first way of organizing
one’s thoughts about the production side of the economy. To come closer to
a model of how modern economies function, however, many modifications and
extensions are needed.

2.5.1 Convex capital installation costs

In the real world the capital goods used by a production firm are usually owned
by the firm itself rather than rented for single periods on rental markets. This is
because inside the specific plant in which these capital goods are an integrated
part, they are generally worth much more than outside. So in practice firms ac-
quire and install fixed capital equipment with a view on maximizing discounted
expected profits in the future. The cost associated with this fixed capital in-
vestment not only includes the purchase price of new equipment, but also the
installation costs (the costs of setting up the new fixed equipment in the firm and
the associated costs of reorganizing work processes).

Assuming the installation costs are strictly convex in the level of investment,
the firm has to solve an intertemporal optimization problem. Forward-looking
expectations thus become important and this has implications for how equilib-
rium in the output market is established and how the equilibrium interest rate is
determined. Indeed, in the simple neoclassical setup above, the interest rate equi-
librates the market for capital services. The value of the interest rate is simply
tied down by the equilibrium condition (2.39) in this market and what happens
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in the output market is a trivial consequence of this. But with convex capital
installation costs the firm’s capital stock is given in the short run and the interest
rate(s) become(s) determined elsewhere in the model, as we shall see in chapters
14 and 15.

2.5.2 Long-run versus short-run production functions

In the discussion of production functions up to now we have been silent about the
distinction between “ex ante” and “ex post” substitutability between capital and
labor. By ex ante is meant “when plant and machinery are to be decided upon”
and by ex post is meant “after the equipment is designed and constructed”. In the
standard neoclassical competitive setup like in (2.35) there is a presumption that
also after the construction and installation of the equipment in the firm, the ratio
of the factor inputs can be fully adjusted to a change in the relative factor price.
In practice, however, when some machinery has been constructed and installed,
its functioning will often require a more or less fixed number of machine operators.
What can be varied is just the degree of utilization of the machinery. That is,
after construction and installation of the machinery, the choice opportunities are
no longer described by the neoclassical production function but by a Leontief
production function,

Y = min(AuK, BL), A>0,B>0, (2.46)

where K is the size of the installed machinery (a fixed factor in the short run)
measured in efficiency units, u is its utilization rate (0 < u < 1), and A and B
are given technical coefficients measuring efficiency (cf. Section 2.1.2).

So in the short run the choice variables are v and L. In fact, essentially only
u is a choice variable since efficient production trivially requires L = AuK/B.
Under “full capacity utilization” we have u = 1 (each machine is used 24 hours
per day seven days per week). “Capacity” is given as AK per week. Producing
efficiently at capacity requires L = AK /B and the marginal product by increasing
labor input is here nil. But if demand, Y?, is less than capacity, satisfying this
demand efficiently requires L = Y?/B and u = BL/(AK) < 1. As long as u < 1,
the marginal productivity of labor is a constant, B.

The various efficient input proportions that are possible ex ante may be ap-
proximately described by a neoclassical CRS production function. Let this func-
tion on intensive form be denoted y = f(k). When investment is decided upon
and undertaken, there is thus a choice between alternative efficient pairs of the
technical coefficients A and B in (2.46). These pairs satisfy

f(k) = Ak = B. (2.47)
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So, for an increasing sequence of k’s, ki, ka,. .., k;,..., the corresponding pairs are
(A;, By) = (f(ki)/ki, f(ks)),i=1,2,....28 We say that ex ante, depending on the
relative factor prices as they are “now” and are expected to evolve in the future,
a suitable technique, (A;, B;), is chosen from an opportunity set described by the
given neoclassical production function. But ex post, i.e., when the equipment
corresponding to this technique is installed, the production opportunities are
described by a Leontief production function with (A, B) = (4;, B;).

In the picturesque language of Phelps (1963), technology is in this case putty-
clay. Ex ante the technology involves capital which is “putty” in the sense of
being in a malleable state which can be transformed into a range of various
machinery requiring capital-labor ratios of different magnitude. But once the
machinery is constructed, it enters a “hardened” state and becomes ”clay”. Then
factor substitution is no longer possible; the capital-labor ratio at full capacity
utilization is fixed at the level k = B;/A;, as in (2.46). Following the terminology
of Johansen (1972), we say that a putty-clay technology involves a “long-run
production function” which is neoclassical and a “short-run production function”
which is Leontief.

Table 1. Technologies classified according to
factor substitutability ex ante and ex post.

Ex post substitution
Ex ante substitution possible \ impossible
possible putty-putty | putty-clay
impossible clay-clay

In contrast, the standard neoclassical setup assumes the same range of sub-
stitutability between capital and labor ex ante and ex post. Then the technology
is called putty-putty. This term may also be used if ex post there is at least some
substitutability although less than ex ante. At the opposite pole of putty-putty
we may consider a technology which is clay-clay. Here neither ex ante nor ex post
is factor substitution possible. Table 1 gives an overview of the alternative cases.

The putty-clay case is generally considered the realistic case. As time pro-
ceeds, technological progress occurs. To take this into account, we may replace
(2.47) and (2.46) by f(k;,t) = Ak, = B, and Y; = min(Au, K;, B;L;), respec-
tively. If a new pair of Leontief coefficients, (Ay,, By,), efficiency-dominates its
predecessor (by satisfying A, > A;, and B, > By, with at least one strict equal-
ity), it may pay the firm to invest in the new technology at the same time as

28The points P and Q in the right-hand panel of Fig. 2.3 can be interpreted as constructed
this way from the neoclassical production function in the left-hand panel of the figure.
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some old machinery is scrapped. Real wages tend to rise along with technolog-
ical progress and the scrapping occurs because the revenue from using the old
machinery in production no longer covers the associated labor costs.

The clay property ex-post of many technologies is important for short-run
analysis. It implies that there may be non-decreasing marginal productivity of
labor up to a certain point. It also implies that in its investment decision the
firm will have to take expected future technologies and future factor prices into
account. For many issues in long-run analysis the clay property ex-post may be
less important, since over time adjustment takes place through new investment.

2.5.3 A simple portrayal of price-making firms

Another modification which is important in short- and medium-run analysis,
relates to the assumed market forms. Perfect competition is not a good approx-
imation to market conditions in manufacturing and service industries. To bring
perfect competition in the output market in perspective, we give here a brief re-
view of firms’ behavior under a form of monopolistic competition that is applied
in many short-run models.

Suppose there is a large number of differentiated goods, i = 1,2,...,n, each
produced by a separate firm. In the short run n is given. Each firm has monopoly
on its own good (supported, say, by a trade mark, patent protection, or simply
secrecy regarding the production recipe). The goods are imperfect substitutes to
each other and so indirect competition prevails. Each firm is small in relation to
the “sum” of competing firms and perceives that these other firms do not respond
to its actions.

In the given period let firm ¢ face a given downward-sloping demand curve for
its product,

—&

Y, < <%) % —D(P), e>1. (2.48)
Here Y; is the produced quantity and the expression on the right-hand side of the
inequality is the demand as a function of the price P; chosen by the firm.?® The
“general price level” P (a kind of average across the different goods, cf. Chapter
22) and the “general demand level”, given by the index Y, matter for the position
of the demand curve in the (Y;, P;) plan, cf. Fig. 2.5. The price elasticity
of demand, ¢, is assumed constant and higher than one (otherwise there is no
solution to the monopolist’s decision problem). Variables that the monopolist
perceives as exogenous are implicit in the demand function symbol D. We imagine
prices are expressed in terms of money (so they are “nominal” prices, hence
denoted by capital letters whereas we generally use small letters for “real” prices).

29We ignore production for inventory holding.
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For simplicity, factor markets are still assumed competitive. Given the nomi-
nal factor prices, Wy and Wy, firm ¢ wants to maximize its profit

I = BY; — Wi K; — Wi L,

subject to (2.48) and the neoclassical production function Y; = F(K;, L;). For the
purpose of simple comparison with the case of perfect competition as described
in Section 2.4, we return to the case where both labor and capital are variable
inputs in the short run.?® It is no serious restriction on the problem to assume
the monopolist will want to produce the amount demanded so that Y; = D(F;).
It is convenient to solve the problem in two steps.

N
P
C'(Y)
P(Y))
R'(Y)
0 >Y

YS

1

Figure 2.5: Determination of the monopolist price and output.

Step 1. Imagine the monopolist has already chosen the output level Y;. Then
the problem is to minimize cost:

An interior solution (K, L;) will satisfy the first-order conditions
AFi(K;, L) = Wi,  AFL(Ki, L) = Wy, (2.49)

where )\ is the Lagrange multiplier. Since F' is neoclassical and thereby strictly
quasiconcave, the first-order conditions are not only necessary but also sufficient
for (K;, L;) to be a solution, and (K;, L;) will be unique so that we can write

30Generally, the technology would differ across the different product lines and F' should thus
be replaced by F*, but for notational convenience we ignore this.
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these conditional factor demands as functions, K¢ = K (W, W,Y;) and L¢ =
LWy, Wyp,Y;). This gives rise to the cost function C(Y;) = Wx KWk, W,Y;)
+WL L(Wg, WL, Y;).
Step 2. Solve
max 11(¥;) = R(Y) — C(¥) = P(Y)Y, - C(¥).

We have here introduced “total revenue” R(Y;) = P(Y;)Y;, where P(Y;) is the
inverse demand function defined by P(Y;) = DX(Y;) = [Vi/(Y/n)] "/ P from
(2.48). The first-order condition is

R(Y:) = P(Y;) + P'(V)Yi = C'(Yi), (2.50)

where the left-hand side is marginal revenue and the right-hand side is marginal
cost.

A sufficient second-order condition is that I1"(Y;) = R"(Y;) — C"(Y;) <0, i.e.,
the marginal revenue curve crosses the marginal cost curve from above. In the
present, case this is surely satisfied if we assume C”(Y;) > 0, which also ensures
existence and uniqueness of a solution to (2.50). Substituting this solution, which
we denote Y;®, cf. Fig. 2.5, into the conditional factor demand functions from
Step 1, we find the factor demands, K and L¢. Owing to the downward-sloping
demand curves the factor demands are unique whether the technology exhibits
DRS, CRS, or IRS. Thus, contrary to the perfect competition case, neither CRS
nor IRS pose particular problems.

From the definition R(Y;) = P(Y;)Y; follows

R(Y;) =P, (1+ﬁ73’(yi)) =P (1—%) :Pf;l.

B

So the pricing rule is P; = (1+ u)C’'(Y;), where Y; is the profit maximizing output
level and p =¢/(e — 1) — 1 > 0 is the mark-up on marginal cost. An analytical
very convenient feature is that the markup is thus a constant.

In parallel with (2.31) and (2.32) the solution to firm 4’s decision problem is
characterized by the marginal revenue productivity conditions

R (Y Fr(K8 LY = W, (2.51)

2

R(Y?)FL(K{ L)) = W, (2.52)

where Y = F(K¢, L{). These conditions follow from (2.49), since the Lagrange
multiplier equals marginal cost (see Appendix A), which equals marginal revenue.
That is, at profit maximum the marginal revenue products of capital and labor,
respectively, equal the corresponding factor prices. Since P, > R'(Y;®), the factor
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prices are below the value of the marginal productivities. This reflects the market
power of the firms.

In macro models a lot of symmetry is often assumed. If there is complete
symmetry across product lines and if factor markets clear as in (2.36) and (2.37)
with inelastic factor supplies, K® and L°, then K¢ = K*/n and L¢ = L%/n.
Furthermore, all firms will choose the same price so that P, =P, i =1,2,...,n.
Then the given factor supplies, together with (2.51) and (2.52), determine the
equilibrium real factor prices:

Wk 1 K® L*
N AT
oW 1 K® L*
R P X

where we have used that R'(Y;®) = P/(14 ) under these circumstances. As under
perfect competition, the real factor prices are proportional to the corresponding
marginal productivities, although with a factor of proportionality less than one,
namely equal to the inverse of the markup. This observation is sometimes used
as a defence for applying the simpler perfect-competition framework for studying
certain long-run aspects of the economy. For these aspects, the size of the pro-
portionality factor may be immaterial, at least as long as it is relatively constant
over time. Indeed, the constant markups open up for a simple transformation of
many of the perfect competition results to monopolistic competition results by
inserting the markup factor 1 + p the relevant places in the formulas.

If in the short term only labor is a variable production factor, then (2.51)
need not hold. As claimed by Keynesian and New Keynesian thinking, also the
prices chosen by the firms may be more or less fixed in the short run because
the firms face price adjustment costs (“menu costs”) and are reluctant to change
prices too often, at least vis-a-vis changes in demand. Then in the short run only
the produced quantity will adjust to changes in demand. As long as the output
level is within the range where marginal cost is below the price, such adjustments
are still beneficial to the firm. As a result, even (2.52) may at most hold “on
average” over the business cycle. These matters are dealt with in Part V of this
book.

In practice, market power and other market imperfections also play a role in
the factor markets, implying that further complicating elements enter the pic-
ture. One of the tasks of theoretical and empirical macroeconomics is to clarify
the aggregate implications of market imperfections and sort out which market
imperfections are quantitatively important in different contexts.
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2.5.4 The financing of firms’ operations

We have so far talked about aspects related to production and pricing. What
about the financing of a firm’s operations? To acquire not only its fixed capital
(structures and machines) but also its raw material and other intermediate inputs,
a firm needs funds (there are expenses before the proceeds from sale arrive). These
funds ultimately come from the accumulated saving of households. In long-run
macromodels to be considered in the next chapters, uncertainty as well as non-
neutrality of corporate taxation are ignored; in that context the capital structure
(the debt-equity ratio) of firms is indeterminate and irrelevant for production
outcomes.?' In those chapters we shall therefore concentrate on the latter. Later
chapters, dealing with short- and medium-run issues, touch upon cases where
capital structure and bankruptcy risk matter and financial intermediaries enter
the scene.

2.6 Literature notes

As to the question of the empirical validity of the constant returns to scale as-
sumption, ? offers an account of the econometric difficulties associated with
estimating production functions. Studies by ? and 7 suggest returns to scale
are about constant or decreasing. Studies by 7, 7, 7, 7, and ? suggest there are
quantitatively significant increasing returns, either internal or external. On this
background it is not surprising that the case of IRS (at least at industry level),
together with market forms different from perfect competition, has received more
attention in contemporary macroeconomics and in the theory of economic growth.

Macroeconomists’ use of the value-laden term “technological progress” in con-
nection with technological change may seem suspect. But the term should be
interpreted as merely a label for certain types of shifts of isoquants in an abstract
universe. At a more concrete and disaggregate level analysts of course make use
of more refined notions about technological change, recognizing not only benefits
of new technologies, but for instance also the risks, including risk of fundamental
mistakes (think of the introduction and later abandonment of asbestos in the
construction industry). For history of technology see, e.g., Ruttan (2001) and
Smil (2003).

When referring to a Cobb-Douglas (or CES) production function some authors
implicitly assume that the partial output elasticities with respect to inputs are
time-independent and thereby not affected by technological change. For the case
where the inputs in question are renewable and nonrenewable natural resources,

31Tn chapter 14 we return to this irrelevance proposition, called the Modigliani-Miller theorem.
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Growiec and Schumacher (2008) study cases of time-dependency of the partial
output elasticities.

When technical change is not “neutral” in one of the senses described, it may
be systematically “biased” in alternative “directions”. The reader is referred to
the specialized literature on economic growth, cf. literature notes to Chapter 1.

Embodied technological progress, sometimes called investment-specific tech-
nological progress, is explored in, for instance, Solow (1960), Greenwood et al.
(1997), and Groth and Wendner (2015).

Time series for different countries’ aggregate and to some extent sectorial
capital stocks are available from Penn World Table, ..., EU KLEMS, ....; and the
AMECO database,

The concept of Gorman preferences and conditions ensuring that a representa-
tive household is admitted are surveyed in Acemoglu (2009). Another source, also
concerning the conditions for the representative firm to be a meaningful notion,
is Mas-Colell et al. (1995). For general discussions of the limitations of represen-
tative agent approaches, see 7 and 7. Reviews of the “Cambridge Controversy”
are contained in Mas-Colell (1989) and ?. The last-mentioned authors find the
conditions required for the well-behavedness of these constructs so stringent that
it is difficult to believe that actual economies are in any sense close to satisfy
them. For less distrustful views and constructive approaches to the issues, see
for instance Johansen (1972), 7, Jorgenson et al. (2005), and ?. For a stochastic
approach to aggregation, see e.g. Gallegati et al., 2006.

Scarf (1960) provided a series of examples of lack of dynamic stability of an
equilibrium price vector in an exchange economy. Mas-Colell et al. (1995) survey
the later theoretical development in this field.

The counterexample to guaranteed stability of the neoclassical factor market
equilibrium presented towards the end of Section 2.4 is taken from ?, where
further perspectives are discussed. It may be argued questions about stability
should be studied on the basis of adjustment processes of a less mechanical nature
than a Walrasian tdtonnement process. The view would be that trade out of
equilibrium should be incorporated in the analysis and agents’ behavior out of
equilibrium should be founded on some kind of optimization or “satisficing”,
incorporating adjustment costs and imperfect information. This is a complicated
field, and the theory seems not settled. Yet it may be fair to say that the studies
of adjustment processes out of equilibrium indicate that the equilibrating force
of Adam Smith’s invisible hand is not without its limits. See Porter (1975), 7,
Osborne and Rubinstein (1990), ?, and Foley (2010) for reviews and elaborate
discussion of these issues.

We introduced the assumption that physical capital depreciation can be de-
scribed as geometric (in continuous time exponential) evaporation of the capital
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stock. This formula is popular in macroeconomics, more so because of its simplic-
ity than its realism. An introduction to more general approaches to depreciation
is contained in, e.g., 7.

2.7 Appendix

A. Strict quasiconcavity

Consider a function f : A — R, where A is a convex set, A C R".3? Given a
real number a, if f(x) = a, the upper contour set is defined as {z € A| f(z) > a}
(the set of input bundles that can produce at least the amount a of output). The
function f(x) is called quasiconcave if its upper contour sets, for any constant
a, are convex sets. If all these sets are strictly convex, f(x) is called strictly
quasiconcave.

Average and marginal costs To show that (2.14) holds with n production

inputs, n = 1,2,..., we derive the cost function of a firm with a neoclassical
production function, Y = F(X;, Xs,..., X,). Given a vector of strictly positive
input prices w = (wy, ..., w,) >> 0, the firm faces the problem of finding a cost-

minimizing way to produce a given positive output level Y within the range of
F. The problem is

minZwiXi st. F(Xy,...,X,) =Y and X; >0, i =1,2,...,n.

=1

An interior solution, X* = (X7,..., X), to this problem satisfies the first-order
conditions A\F}(X*) = w;, where )\ is the Lagrange multiplier, i = 1,...,n.3 Since
F'is neoclassical and thereby strictly quasiconcave in the interior of R, the first-
order conditions are not only necessary but also sufficient for the vector X* to be
a solution, and X* will be unique®* so that we can write it as a function, X*(Y) =
(X5(Y),..., X:(Y)). This gives rise to the cost function C(Y) = Y1  w; X7 (V).
So average cost is C(Y)/Y. We find marginal cost to be

C(7) = D m X (F) = X 3D FIX)X!(F) =

=1

32Recall that a set S is said to be convex if x,3y € S and A € [0, 1] implies Az + (1 — \)y € S.

33Since in this section we use a bit of vector notation, we exceptionally mark first-order partial
derivatives by a prime in order to clearly distinguish from the elements of a vector (so we write
F! instead of our usual F}).

31See Sydsaeter et al. (2008), pp. 74, 75, and 125.
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where the third equality comes from the first-order conditions, and the last equal-
ity is due to the constraint F'(X*(Y')) =Y, which, by taking the total derivative
on both sides, gives > | F/(X*)X(Y) = 1. Consequently, the ratio of average
to marginal costs is

CY)/Y _ Y, wiXi(V) _ Y0, FIXT)X(Y)

C'(Y) \Y F(X*) ’

which in analogy with (2.13) is the elasticity of scale at the point X*. This proves
(2.14).

Sufficient conditions for strict quasiconcavity The claim (iii) in Section
2.1.3 was that a continuously differentiable two-factor production function F'(K, L)
with CRS, satisfying Fix > 0, F;, > 0, and Fxg < 0, Fr;, < 0, will automatically
also be strictly quasi-concave in the interior of R? and thus neoclassical.

To prove this, consider a function of two variables, z = f(z, y), that is twice
continuously differentiable with f; = 0z/0x > 0 and f = 02/0y > 0, everywhere.
Then the equation f(z, y) = a, where a is a constant, defines an isoquant,
y = g(x), with slope ¢'(z) = —fi(z,y)/f2(x,y). Substitute g(x) for y in this
equation and take the derivative with respect to x. By straightforward calculation

we find
v fifae = 2fifafa + f3 fun

If the numerator is negative, then ¢”(x) > 0; that is, the isoquant is strictly
convex to the origin. And if this holds for all (x, y), then f is strictly quasi-
concave in the interior of R?. A sufficient condition for a negative numerator is
that f11 < 0, fas < 0 and fo; > 0. All these conditions, including the last three
are satisfied by the given function F. Indeed, F, F, Fxg, and Fp; have the
required signs. And when F' has CRS, F' is homogeneous of degree 1 and thereby
Fxr > 0, see Appendix B. Hereby claim (iii) in Section 2.1.3 is proved.

(2.53)

B. Homogeneous production functions

Claim (iv) in Section 2.1.3 is that a two-factor production function with CRS,
satisfying Fix > 0,F;, > 0, and Fgg < 0,F; < 0, has always Fg; > 0, i.e.,
there is direct complementarity between K and L. This assertion is implied by
the following observations on homogeneous functions.

Let Y = F(K, L) be a twice continuously differentiable production function
with Fx > 0 and F > 0 everywhere. Assume F' is homogeneous of degree h > 0,
that is, for all possible (K, L) and all A > 0, F(AK,AL) = \"F(K, L). According
to Euler’s theorem (see Math Tools) we then have:
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CLAIM 1 For all (K, L), where K > 0 and L > 0,
KFy(K,L) + LF,(K,L) = hF(K, L). (2.54)

Euler’s theorem also implies the inverse:

CLAIM 2 If (2.54) is satisfied for all (K, L), where K > 0 and L > 0, then
F(K, L) is homogeneous of degree h.

Partial differentiation with respect to K and L, respectively, gives, after or-
dering,

KFxi+ LFx = (h—1)Fg (2.55)
KFg,+LF, = (h—1)F. (2.56)

In (2.55) we can substitute Fx = Fk; (by Young’s theorem). In view of Claim
2 this shows:

CLAIM 3 The marginal products, F and Fp, considered as functions of K and
L, are homogeneous of degree h — 1.

We see also that when h > 1 and K and L are positive, then

Frr < 0 implies Fgr > 0, (2.57)
Fr, < 0 1mphes Frr > 0. (258)

For h =1 this establishes the direct complementarity result, (iv) in Section 2.1.3,
to be proved. A by-product of the derivation is that also when a neoclassical
production function is homogeneous of degree h > 1 (which implies IRS), does
direct complementarity between K and L hold.

Remark. The microeconomic terminology around complementarity and substi-
tutability may easily lead to confusion. In spite of K and L exhibiting direct
complementarity when Fx; > 0, K and L are still substitutes in the sense that
cost minimization for a given output level implies that a rise in the price of one
factor results in higher demand for the other factor.

Claim (v) in Section 2.1.3 is the following. Suppose we face a CRS production
function, Y = F(K, L), that has positive marginal products, Fx and F, every-
where and isoquants, K = ¢(L), satisfying the condition ¢”(L) > 0 everywhere
(i.e., F is strictly quasi-concave). Then the partial second derivatives must satisfy
the neoclassical conditions:

Frr < 0, Frr <. (259)

The proof is as follows. The first inequality in (2.59) follows from (2.53) combined
with (2.55). Indeed, for h = 1, (2.55) and (2.56) imply Fxx = —FrxL/K
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= —FKLL/K and FKL = —FLLL/K, i.e., FKK = FLL<L/K)2 (OI', in the notation
of Appendix A, fos = f11(x/y)?), which combined with (2.53) gives the conclusion
Fxkr <0, when g” > 0. The second inequality in (2.59) can be verified in a similar
way.

Note also that for h = 1 the equations (2.55) and (2.56) entail

KFKK = —LFLK and KFKL = —LFLL, (260)

respectively. By dividing the left- and right-hand sides of the first of these equa-
tions with those of the second we conclude that Fx g Fr;, = F}; in the CRS case.
We see also from (2.60) that, under CRS, the implications in (2.57) and (2.58)
can be turned round.

Finally, we asserted in § 2.1.1 that when the neoclassical production function
Y = F(K, L) is homogeneous of degree h, then the marginal rate of substitution
between the production factors depends only on the factor proportion k = K/L.
Indeed,

FL(KaL) _ Lh_lFL<k71) _ FL(kal)
FK(KaL) a LhilFK(kal) B FK(k71)

MRSk (K,L) = =mrs(k), (2.61)
where k = K/L. The result (2.61) follows even if we only assume F(K, L) is
homothetic. When F(K, L) is homothetic, by definition we can write F/(K, L) =
»(G(K, L)), where G is homogeneous of degree 1 and ¢ is an increasing function.
In view of this, we get

Y'GL(K,L) _ Gp(k1)

MRSk.(K,L) = = ,
xilK, L) WGr(K, L)~ Gg(k,1)

where the last equality is implied by Claim 3 for A = 1.

C. The Inada conditions combined with CRS

We consider a neoclassical production function, Y = F(K, L), exhibiting CRS.
Defining k¥ = K/L, we can then write Y = LF(k,1) = Lf(k), where f(0) >
0,f >0, and f” <0.

Essential inputs In Section 2.1.2 we claimed that the upper Inada condition
for M PL together with CRS implies that without capital there will be no output:

F(0,L)=0 for any L > 0.

In other words: in this case capital is an essential input. To prove this claim, let
K > 0 be fixed and let L — oo. Then k — 0, implying, by (2.16) and (2.18),
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that F(K,L) = f(k) — f'(k)k — f(0). But from the upper Inada condition for
M PL we also have that L — oo implies Fj,(K, L) — 0. It follows that

the upper Inada condition for M PLimplies f(0) = 0. (2.62)

Since under CRS, for any L > 0, F(0,L) = LF(0,1) = Lf(0), we have hereby
shown our claim.

Similarly, we can show that the upper Inada condition for M PK together
with CRS implies that labor is an essential input. Consider the output-capital
ratio x = Y/K. When F has CRS, we get x = F(1,{) = ¢g({), where { = L/K,
g >0, and ¢” < 0. Thus, by symmetry with the previous argument, we find that
under CRS, the upper Inada condition for M PK implies g(0) = 0. Since under
CRS F(K,0) = KF(1,0) = Kg¢(0), we conclude that the upper Inada condition
for M PK together with CRS implies

F(K,0)=0 for any K >0,

that is, without labor, no output.

Sufficient conditions for output going to infinity when either input goes
to infinity Here our first claim is that when F' exhibits CRS and satisfies the
upper Inada condition for M PL and the lower Inada condition for M PK, then

lim F(K,L) =00 for any K > 0.

L—oo

To prove this, note that Y can be written Y = K f(k)/k, since K/k = L. Here,

lim f(k) = f(0) =0,
k—0
by continuity and (2.62), presupposing the upper Inada condition for M PL.
Thus, for any given K > 0,
k k) — f(0
lim F(K,L) =K lim (k) = KlimM = K lim f'(k) = oo,
L—oo L—oco k—0 k—0
by the lower Inada condition for M PK. This verifies the claim.

Our second claim is symmetric with this and says: when F’ exhibits CRS and
satisfies the upper Inada condition for M PK and the lower Inada condition for
MPL, then

lim F(K,L) =00 forany L > 0.

K—oo

The proof is analogue. So, in combination, the four Inada conditions imply, under
CRS, that output has no upper bound when either input goes to infinity.
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D. Concave neoclassical production functions

Two claims made in Section 2.4 are proved here.

CLAIM 1 When a neoclassical production function F'(K, L) is concave, it has
non-increasing returns to scale everywhere.

Proof. We consider a concave neoclassical production function, F. Let x =
(x1,x9) = (K, L). Then we can write F'(K, L) as F(x). By concavity, for all pairs
x’,x € R%, we have F(x°) — F(x) < S22 F!/(x)(2? — x;). In particular, for
x? = (0,0), since F'(x°) = F(0,0) = 0, we have

—F(x) < — Z F!(x) ;. (2.63)

Suppose x €R? . Then F(x) > 0 in view of F' being neoclassical so that F > 0
and F7, > 0. From (2.63) we now find the elasticity of scale to be

2

> Fl(x)z/F(x) < 1. (2.64)

i=1
In view of (2.13) and (2.12), this implies non-increasing returns to scale every-

where. [

CLAIM 2 When a neoclassical production function F'(K, L) is strictly concave,
it has decreasing returns to scale everywhere.

Proof. The argument is analogue to that above, but in view of strict concavity
the inequalities in (2.63) and (2.64) become strict. This implies that /' has DRS
everywhere. [

2.8 Exercises

2.1
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