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Uncertainty, expectations,
and asset price bubbles

This lecture note provides a framework for addressing themes where expectations

in uncertain situations are important elements. Our previous models have not taken

seriously the problem of uncertainty. Where agent’s expectations about future variables

were involved and these expectations were assumed to be model-consistent (“rational”),

we only considered a special case: perfect foresight. Shocks were treated in a peculiar

(almost self-contradictory) way: they might occur, but only as a complete surprise, a

once-for-all event. Agents’ expectations and actions never incorporated that new shocks

could arrive.

We will now allow recurrent shocks to take place. The environment in which the

economic agents act will be considered inherently uncertain. How can this be modeled

and how can we solve the resultant models? Since it is easier to model uncertainty

in discrete rather than continuous time, we examine uncertainty and expectations in a

discrete time framework.

Our emphasis will be on the hypothesis that when facing uncertainty a dominating

fraction of the economic agents form “rational expectations” in the sense of making prob-

abilistic forecasts which coincide with the forecast calculated on the basis of the “relevant

economic model”. But we begin with simple mechanistic expectation formation hypothe-

ses that have been used to describe day-to-day expectations of people who do not at all

think about the probabilistic properties of the economic environment.

1 Simple expectation formation hypotheses

One simple supposition is that expectations change gradually to correct past expectation

errors. Let  denote the general price level in period  and  ≡ ( − −1)−1

the corresponding inflation rate. Further, let −1 denote the “subjective expectation”,

formed in period − 1 of  i.e., the inflation rate from period − 1 to period We may

1



think of the “subjective expectation” as the expected value in a vaguely defined subjective

conditional probability distribution.

The hypothesis of adaptive expectations (the AE hypothesis) says that the expectation

is revised in proportion to the past expectation error,

−1 = −2−1 + (−1 − −2−1) 0   ≤ 1 (1)

where the parameter  is called the adjustment speed. If  = 1 the formula reduces to

−1 = −1 (2)

This limiting case is known as static expectations or myopic expectations; the subjective

expectation is that the inflation rate will remain the same or at least that it is not more

likely to go up than down.

We may write (1) on the alternative form

−1 = −1 + (1− )−2−1 (3)

This says that the expected value concerning this period (period ) is a weighted average

of the actual value for the last period and the expected value for the last period. By

backward substitution we find

−1 = −1 + (1− )[−2 + (1− )−3−2]

= −1 + (1− )−2 + (1− )2[−3 + (1− )−4−3]

= 

X
=1

(1− )−1− + (1− )−−1−

Since (1− ) → 0 for →∞, we have (for −−1− bounded as →∞)

−1 = 

∞X
=1

(1− )−1− (4)

Thus, according to the AE hypothesis with 0    1 the expected inflation rate is a

weighted average of the historical inflation rates back in time. The weights are geomet-

rically declining with increasing time distance from the current period. The weights sum

to one (in that
P∞

=1 (1− )−1 = (1− (1− ))−1 = 1)

The formula (4) can be generalized to the general backward-looking expectations for-

mula,

−1 =
∞X
=1

−1− where

∞X
=1

 = 1 (5)
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If the weights  in (5) satisfy  = (1− )−1  = 1 2. . .  we get the AE formula (4).

If the weights are

1 = 1 +  2 = −  = 0 for  = 3 4 . . . ,

we get

−1 = (1 + )−1 − −2= −1 + (−1 − −2) (6)

This is called the hypothesis of extrapolative expectations and says:

if   0 then the recent direction of change in  is expected to continue;

if   0 then the recent direction of change in  is expected to be reversed;

if  = 0 then expectations are static as in (2).

There are cases where for instance myopic expectations are “rational” (in a sense to

be defined below). Exercise 1 provides an example. But in many cases purely backward-

looking formulas are too rigid, too mechanistic. They will often lead to systematic expec-

tation errors to one side or the other. It seems implausible that people should not then

respond to their experience and revise their expectations formula. And when expectations

are about things that really matter for people, they are likely to listen to professional fore-

casters who build their forecasting on statistical or econometric models. Such models are

based on a formal probabilistic framework, take the interaction between different variables

into account, and incorporate new information about future possible events.

2 The rational expectations hypothesis

2.1 Preliminaries

We first recapitulate a few concepts from statistics. A sequence {} of random variables
indexed by time is called a stochastic process. A stochastic process {} is called white
noise if for all   has zero expected value, constant variance, and zero covariance across

time.1 A stochastic process {} is called a first-order autoregressive process, abbreviated
AR(1), if  = 0 + 1−1 +  where 0 and 1 are constants, and {} is white noise;
if |1|  1 then {} is called a stationary RA(1) process. A stochastic process {} is
called a random walk if  = −1 +  where {} is white noise.

1The expression white noise derives from electrotechnics. In electrotechnical systems signals will often

be subject to noise. If this noise is arbitrary and has no dominating frequence, it looks like white light.

The various colours correspond to a certain wave length, but white light is light which has all frequences

(no dominating frequence).
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Before defining the term rational expectation, it is useful to clarify a distinction be-

tween two ways in which expectations, whatever their nature, may enter a macroeconomic

model.

2.1.1 Two model types

Type A: models with past expectations of current endogenous variables Sup-

pose a given macroeconomic model can be reduced to two equations, the first being

 =   
−1 +    = 0 1 2  (7)

where  is some endogenous variable (not necessarily  )  and  are given constant

coefficients, and  is an exogenous random variable which follows some specified stochas-

tic process. In line with the notation from Section 1,  
−1 is the subjective expectation

formed in period −1 of the value of the variable  in period  The economic agents are in
simple models assumed to have the same expectations. Or, at least there is a dominating

expectation,  
−1 in the society. What the equation (7) claims is that the endogenous

variable, , depends, in the specified linear way, on the “generally held” expectation of

, formed in the previous period. It is natural to think of the outcome  as being the

aggregate result of agents’ decisions and market mechanisms, the decisions being made at

discrete points in time     −2 −1      immediately after the uncertainty concerning
the period in question is resolved.

The second equation specifies how the subjective expectation is formed. To fix ideas,

let us assume myopic expectations,

 
−1 = −1 (8)

as in (2) above. A solution to the model is a stochastic process for  such that (7) holds,

given the expectation formation (8) and the stochastic process which  follows.

EXAMPLE 1 (imported raw materials and the domestic price level) Let the endogenous

variable in (7) represent the domestic price level (the consumer price index)  and let

 be the price level of imported raw materials. Suppose the price level is determined

through a markup on unit costs,

 = ( + )(1 + ) 0   
1

1 + 
 (*)

where is the nominal wage level in period  = 0 1 2    , and  and  are positive tech-

nical coefficients representing the assumed constant labor and raw meterials requirements,
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respectively, per unit of output;  is a constant markup. Assume further that workers in

period − 1 negotiate next period’s wage level,  so as to achieve, in expected value, a

certain target real wage which we normalize to 1, i.e.,



 
−1

= 1

Inserting into (*), we have

 =   
−1 +   0   = (1 + )  1 0   = (1 + ) (9)

Suppose  = ̄ +  where ̄ is a positive constant and {} is white noise. Assuming
myopic expectations,

 
−1 = −1 (10)

the solution for the evolution of the price level is

 =  −1 + (̄+ )  = 0 1 2    

Without shocks, and starting from an arbitrary −1  0 the time path of the price

level would be  = (−1 −  ∗)+1 +  ∗ where  ∗ = ̄(1− ) Shocks to the price of

imported raw materials result in transitory deviations from  ∗ But as the shocks are only

temporary and ||  1 the domestic price level gradually returns towards the constant

level  ∗ The intervening changes in wage demands in response to the changes in the price

level changes prolong the time it takes to return to  ∗ in the absence of new shocks. ¤

Equation (7) can also be interpreted as a vector equation (such that  and  
−1 are

-vectors,  is an  ×  matrix,  an  × matrix, and  an -vector). The crucial

feature is that the endogenous variables dated  only depend on previous expectations of

date- values of these variables and on the exogenous variables.

Models with past expectations of current endogenous variables will serve as our point

of reference when introducing the concept of rational expectations below.

Type B: models with forward-looking expectations Another way in which agents’

expectations may enter is exemplified by

 =   
+1 +    = 0 1 2  (11)

Here  
+1 is the subjective expectation, formed in period  of the value of  in period

+1. Example: the equity price today depends on what the equity price is expected to be
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tomorrow. Or more generally: the current expectation of a future value of an endogenous

variable influences the current value of this variable. We name this the case of forward-

looking expectations. (In “everyday language” also  
−1 in model type 1 can be said to

be a forward-looking variable as seen from period  − 1. But the dividing line between
the two model types, (7) and (11), is whether current expectations of future values of the

endogenous variables do or do not influence the current values of these.)

The complete model with forward-looking expectations will include an additional equa-

tion, specifying how the subjective expectation,  
+1 is formed. We might again impose

myopic expectations,  
+1 =  A solution to the model is a stochastic process for 

satisfying (11), given the stochastic process followed by  and given the specified ex-

pectation formation and perhaps some additional restrictions in the form of boundary

conditions or similar. The case of forward-looking expectations is important in connec-

tion with many topics in macroeconomics, including the evolution of asset prices, and

issues of asset price bubbles. This case will be dealt with in sections 3 and 4 below.

In passing we note that in both model type 1 and model type 2, it is the mean (in the

subjective probability distribution) of the random variable(s) that enters. This is typical

of simple macroeconomic models which often ignore other measures such as the median,

mode, or higher-order moments. The latter, say the variance of , may be included in

more advanced models where for instance behavior towards risk is important.

2.1.2 The concept of a model-consistent expectation

The concepts of a rational expectation andmodel-consistent expectation are closely related,

but not the same. We start with the latter.

Let there be given a stochastic model represented by (7) combined with some given

expectation formation (8), say. We put ourselves in the position of the investigator or

model builder and ask what the model-consistent expectation of the endogenous variable

 is as seen from period  − 1. It is the mathematical conditional expectation that can
be calculated on the basis of the model and available relevant data revealed up to and

including period − 1. Let us denote this expectation

(|−1) (12)

where  is the expectation operator and −1 denotes the information available at time

− 1. We think of period − 1 as the half-open time interval [− 1 ) and imagine that
the uncertainty concerning the exogenous random variable −1 is resolved at time − 1
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So −1 includes knowledge of −1 and thereby, via the model, also of −12

The information −1 may comprise knowledge of the realized values of  and  up

until and including period − 1 Instead of (12) we could, for instance, write

(|−1 = −1     − = −;−1 = −1    − = −)

Here information (some of which may be redundant) goes back to a given initial period,

say period 0, in which case  equals  Alternatively, perhaps information goes back to

“ancient times”, possibly represented by  = ∞ Anyway, as time proceeds, in general

more and more realizations of the exogenous and endogenous variables become known

and in this sense the information −1 expands with rising . The information −1 may

also be interpreted as “partial lack of uncertainty”, so that an “increasing amount of

information” and “reduced uncertainty” are seen as two sides of the same thing. The

“reduced uncertainty” lies in the fact that the space of possible time paths {( )}+−
as of time  shrinks as time proceeds ( denotes the time horizon as seen from time ).3

Indeed, this space shrinks precisely because more and more realizations of the variables

take place (more information appears) and thereby rule out an increasing subset of paths

that were earlier possible.

In Example 1, as long as the subjective expectation is the myopic expectation (10),

the model-consistent expectation is

(|−1) =  −1 + ̄

Inserting the investigator’s estimated values of the coefficients  and  the investigator’s

forecast of  is obtained.

2.2 The rational expectations hypothesis

Unsatisfied with mechanistic formulas like those of Section 1, the American economist

John F. Muth (1961) introduced a radically different approach, the hypothesis of rational

expectations. Muth stated the hypothesis the following way:

I should like to suggest that expectations, since they are informed predictions

of future events, are essentially the same as the predictions of the relevant

2We refer to −1 as the “available information” rather than the “information set” which is an alterna-
tive term used in the literature. The latter term is tricky, however, and has different meanings in different

branches of economics, hence we are hesitant to use it. The subtleties are accounted for in Appendix B,

dealing with mathematical conditional expectations in general.
3By “possible” is meant “ex ante feasible according to a given model”.
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economic theory. At the risk of confusing this purely descriptive hypothesis

with a pronouncement as to what firms ought to do, we call such expectations

’rational’ (Muth 1961).

Muth applied this hypothesis to simple microeconomic problems. The hypothesis was

subsequently extended and applied to general equilibrium theory and macroeconomics by

what since the early 1970s became known as the New Classical Macroeconomics school.

Nobel laureate Robert E. Lucas from the University of Chicago lead the way by a series of

papers starting with Lucas (1972) and Lucas (1973). Assuming rational expectations in a

model instead of, for instance, adaptive expectations may radically change the dynamics

and impact of economic policy.

2.2.1 The concept

Assuming the economic agents have rational expectations (RE) is to assume that their

subjective expectation equals the model-consistent expectation, that is, the mathematical

conditional expectation that can be calculated on the basis of the model and available

relevant information about the exogenous stochastic variables. In connection with the

model ingredient (7), assuming the agents have rational expectations thus means that

 
−1 = (|−1) (13)

i.e., agents’ subjective conditional expectation coincides with the “objective” or “true”

conditional expectation, given the model (7).

Together, the equations (7) and (13) constitute a simple rational expectations model

(henceforth an RE model). We may write the model in compact form as

 = (|−1) +    = 0 1 2  (14)

The assumption of rational expectations thus relies on idealized conditions.

2.2.2 Solving a simple RE model

To solve the model means to find the stochastic process followed by  given the sto-

chastic process followed by the exogenous variable  For a linear RE model with past

expectations of current endogenous variables, the solution procedure is the following.

1. By substitution, reduce the RE model (or the relevant part of the model) into a

form like (14) expressing the endogenous variable in period  in terms of its past
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expectation and the exogenous variable(s). (The case with multiple endogenous

variables is treated similarly.)

2. Take the conditional expectation on both sides of the equation and solve for the

conditional expectation of the endogenous variable.

3. Insert into the reduced form and rearrange.

In practice there is often a fourth step, namely to express other endogenous variables

in the model in terms of those found in step 3. Let us see how the procedure works by

way of the following example.

EXAMPLE 2 We modify Example 1 by replacing myopic expectations by rational expec-

tations, i.e., (10) is replaced by  
−1 = (|−1) Now “available information” includes

that the subjective expectations are rational expectations. Step 1:

 = (|−1) +   0    1   0 (15)

Step 2: (|−1) = (|−1) + ̄ implying

( |−1) = 
̄

1− 


Step 3: Insert into (15) to get

 = 
̄

1− 
+ (̄+ )

This is the solution of the model in the sense of a specification of the stochastic process

followed by .

To compare with myopic expectations, suppose the event  6= 0 is relatively seldom
and that at  = 0 1  0 − 1 it so happens that  = 0 hence  = ̄(1 − ) ≡  ∗

Then, at  = 0 0  0 so that 0 =  ∗+ 0   ∗ But for  = 0+1 0+2  0+

there is again a sequence of periods with  = 0 Then, under RE, domestic price level

returns to  ∗ already in period 0 + 1.

With myopic expectations, combined with −1 =  ∗ say, the positive shock to import

prices at  = 0 will imply 0 =  ∗ + (̄ + 0) =  ∗ + 0  0+1 = ( ∗ + ) + ̄

=  ∗ +  0+ =  ∗ +  for  = 1 2   After 0 there is a systematic positive

forecast error. This is because the mechanical expectation does not consider how the

economy really functions. ¤
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Returning to the general form (14), without specifying the process {}  the second
step gives

( |−1) = 
( |−1)
1− 

 (16)

when  6= 14 Then, in the third step we get

 = 
( |−1) + (1− )

1− 
= 

 − ( −( |−1))
1− 

 (17)

EXAMPLE 3 Let  follow the process  = ̄ + −1 +  where 0    1 and 

has zero expected value, given all observed past values of  and  Then (17) yields the

solution

 = 
 − 

1− 
= 

̄+ −1 + (1− )

1− 
  = 0 1 2 .

In Exercise 2 you are asked to solve a simple Keynesian model of this form and compare

the solution under rational expectations with the solution under static expectations. ¤

Rational expectations should be viewed as a simplifying assumption that at best offers

an approximation. First, the assumption entails essentially that the economic agents

share one and the same understanding about how the economic system functions (and in

this chapter they also share one and the same information, −1). This is already a big

mouthful. Second, this perception is assumed to comply with the model of the informed

economic specialist. Third, this model is supposed to be the true model of the economic

process, including the true parameter values as well as the true stochastic process which

 follows. By equalizing 

−1 with the true conditional expectation, (|−1) and not

at most some econometric estimate of this, it is presumed that agents know the true values

of the parameters  and  in the data-generating process which the model is supposed

to mimic. In practice it is not possible to attain such a model, at least not unless the

considered economic system has reached some kind of steady state and no structural

changes occur.

Nevertheless, a model based on the rational expectations hypothesis can in many

contexts be seen as a useful cultivation of a theoretical research question. The results

that emerge cannot be due to systematic expectation errors from the economic agents’

side. In this sense the assumption of rational expectations makes up a theoretically

interesting benchmark case.

4If  = 1, the model (14) is inconsistent unless ( |−1)) = 0 in which case there are multiple

solutions. Indeed, for any number  ∈ (−∞, +∞), the process  =  +  solves the model when

( |−1) = 0
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We shall stick to the term “rational expectation” because it is standard. The term

can easily be misunderstood, however. Usually, in economists’ terminology “rational”

refers to behavior based on optimization subject to the constraints faced by the agent.

So one might think that the RE hypothesis stipulates that economic agents try to get the

most out of a situation with limited information, contemplating the benefits and costs

of gathering more information and using adequate statistical estimation methods. But

this is a misunderstanding. The RE hypothesis presumes that the true model is already

known to the agents. The “rationality” refers to taking this assumed knowledge fully into

account.

2.2.3 The forecast error*

Let the forecast of some variable  one period ahead be denoted  
−1. Suppose the

forecast is determined by some given function,  , of realizations of  and  up to and

including period − 1 that is,  
−1 = (−1 −2  −1 −2 ) Such a function is

known as a forecast function. It might for instance be one of the mechanistic forecasting

principles in Section 1. At the other extreme the forecast function might, at least theo-

retically, coincide with the a model-consistent conditional expectation. In the latter case

it is a model-consistent forecast function and we can write

(−1 −2  −1 −2 ) = ( |−1) (18)

= ( |−1 = −1 −2 = −2  −1 = −1 −2 = −2 ) 

The forecast error is the difference between the actually occurring future value,  of

a variable and the forecasted value. So, for a given forecast,  
−1 the forecast error is

 ≡  −  
−1 and is itself a stochastic variable.

If the forecast function in (18) complies with the true data-generating process (a big

“if”), then the implied forecasts would have several ideal properties:

(a) the forecast error would have zero mean;

(b) the forecast error would be uncorrelated with any of the variable in the information

−1 and therefore also with its own past values; and

(c) the expected squared forecast error would be minimized.

To see these properties, note that the model-consistent forecast error is  =  −
( |−1)  From this follows that ( |−1) = 0 cf. (a). Also the unconditional expec-
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tation is nil, i.e., () = 0; this is because (( |−1)) = (0) = 0 at the same time as

(( |−1)) = () by the law of iterated expectations from statistics saying that the

unconditional expectation of the conditional expectation of a stochastic variable  is given

by the unconditional expectation of , cf. Appendix B. Considering the specific model

(7), the model-consistent-forecast error is  =  −( |−1) = ( −( |−1)) by
(16) and (17). An ex post error ( 6= 0) thus emerges if and only if the realization of the
exogenous variable deviates from its conditional expectation as seen from the previous

period.

As to property (b), for  = 1 2  let − be some variable value belonging to the

information −. Then, property (b) is the claim that the (unconditional) covariance

between  and − is zero, i.e., Cov(−) = 0 for  = 1 2 . This follows from the

orthogonality property of model-consistent expectations (see Appendix C). In particular,

with − = − we get Cov(−) = 0 i.e., the forecast errors exhibit lack of serial

correlation. If the covariance were not zero, it would be possible to improve the forecast

by incorporating the correlation into the forecast. In other words, under the assumption of

rational expectations economic agents have no more to learn from past forecast errors. As

remarked above, the RE hypothesis precisely refers to a fictional situation where learning

has been completed and underlying mechanisms do not change.

Finally, a desirable property of a forecast function (·) is that it maximizes “accuracy”,
i.e., minimizes an appropriate loss function. A popular loss function,  in this context is

the expected squared forecast error conditional on the information −1,

 = (( − (−1 −2  −1 −2 ))
2 |−1) 

Assuming  −1 −1−2  are jointly normally distributed, then the solution to

the problem of minimizing  is to set (·) equal to the conditional expectation ( |−1)
based on the data-generating model as in (18).5 This is what property (c) refers to.

EXAMPLE 4 Let  = ( |−1) +  with  = ̄ +  where ̄ is a constant and

 is white noise with variance 
2. Then (17) applies, so that

 =
̄

1− 
+   = 0 1 

with variance 22 The model-consistent forecast error is  = −( |−1) =  with

conditional expectation equal to ( |−1) = 0 This forecast error itself is white noise
and is therefore uncorrelated with the information on which the forecast is based. ¤

5For proof, see Pesaran (1987). Under the restriction of only linear forecast functions, property (c)

holds even without the joint normality assumption, see Sargent (1979).
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It is worth emphasizing that the “true” conditional expectation can not usually be

known − neither to the economic agents nor to the investigator. At best there can be a
reasonable estimate, probably somewhat different across the agents because of differences

in information and conceptions of how the economic system functions. A deeper model of

expectations would give an account of the mechanisms through which agents learn about

the economic environment. An important ingredient here would be how agents contem-

plate the costs and potential gains associated with further information search needed

to reduce systematic expectation errors where possible. This contemplation is intricate

because information search often means entering unknown territory. Moreover, for a sig-

nificant subset of the agents the costs may be prohibitive. A further complicating factor

involved in learning is that when the agents have obtained some knowledge about the

statistical properties of the economic variables, the resulting behavior of the agents may

change these statistical properties. The rational expectations hypothesis sets these prob-

lems aside. It is simply assumed that the structure of the economy remains unchanged

and that the learning process has been completed.

2.3 Perfect foresight as a special case

The notion of perfect foresight corresponds to the limiting case where the variance of

the exogenous variable(s) is zero so that with probability one,  = ( |−1) for all
. Then we have a non-stochastic model where rational expectations imply that agents’

ex post forecast error with respect to  is zero.
6 To put it differently: rational expec-

tations in a non-stochastic model is equivalent to perfect foresight. Note, however, that

perfect foresight necessitates the exogenous variable  to be known in advance. Real-

world situations are usually not like that. If we want our model to take this into account,

the model ought to be formulated in an explicit stochastic framework. And assumptions

should be stated about how the economic agents respond to the uncertainty. The ra-

tional expectations assumption is a one approach to the problem and has been much

applied in macroeconomics in recent decades, perhaps due to lack of compelling tractable

alternatives.

6Here we disregard zero probability events.
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3 Models with rational forward-looking expectations

We here turn to models where current expectations of a future value of an endogenous

variable have an influence on the current value of this variable, that is, the case exemplified

by equation (11). At the same time we introduce two simplifications in the notation. First,

instead of using capital letters to denote the stochastic variables (as we did above and

is common in mathematical statistics), we follow the tradition in macroeconomics and

use lower case letters. So a lower case letter may from now on represent a stochastic

variable or a specific value of this variable, depending on the context. So an equation

like (11) will now read  =  +1 +   Under rational expectations it takes the form

 = (+1 |) +    = 0 1 2    . Second, from now on we write this equation as

 = +1 +       = 0 1 2      6= 0 (19)

That is, the expected value of a stochastic variable, + conditional on the information

, will be denoted +

A stochastic difference equation of the form (19) is called a linear expectation difference

equation of first order with constant coefficient .7 A solution is a specified stochastic

process {} which satisfies (19), given the stochastic process followed by . In the

economic applications usually no initial value, 0, is given. On the contrary, the interpre-

tation is that  depends, for all  on expectations about the future.
8 So  is considered

a jump variable that can immediately shift its value in response to the emergence of new

information about the future ’s. For example, a share price may immediately jump to a

new value when the accounts of the firm become publicly known (often even before, due

to sudden rumors).

Due to the lack of an initial condition for  there can easily be infinitely many

processes for  satisfying our expectation difference equation. We have an infinite forward-

looking “regress”, where a variable’s value today depends on its expected value tomorrow,

this value depending on the expected value the day after tomorrow and so on. Then usu-

ally there are infinitely many expected sequences which can be self-fulfilling in the sense

that if only the agents expect a particular sequence, then the aggregate outcome of their

behavior will be that the sequence is realized. It “bites its own tail” so to speak. Yet, when

7To keep things simple, we let the coefficients  and  be constants, but a generalization to time-

dependent coefficients is straightforward.
8The reason we say “depends on” is that it would be inaccurate to say that  is determined (in a

one-way-sense) by expectations about the future. Rather there is mutual dependence. In view of  being

an element in the information  the expectation of +1 in (19) may depend on  just as much as 
depends on the expectation of +1.
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an equation like (19) is part of a larger model, there will often (but not always) be con-

ditions that allow us to select one of the many solutions to (19) as the only economically

relevant one. For example, an economy-wide transversality condition or another general

equilibrium condition may rule out divergent solutions and leave a unique convergent

solution as the final solution.

We assume  6= 0 since otherwise (19) itself is already the unique solution. It turns
out that the set of solutions to (19) takes a different form depending on whether ||  1
or ||  1:

The case ||  1 In general, there is a unique fundamental solution and infinitely many
explosive bubble solutions.

The case ||  1 In general, there is no fundamental solution but infinitely many non-
explosive solutions. (The case || = 1 resembles this.)

In the case ||  1 the expected future has modest influence on the present. Here we
will concentrate on this case, since it is the case most frequently appearing in macroeco-

nomic models with rational expectations.

4 Solutions when ||  1
Various solution methods are available. Repeated forward substitution is the most easily

understood method.

4.1 Repeated forward substitution

Repeated forward substitution consists of the following steps. We first shift (19) one

period ahead:

+1 =  +1+2 +  +1

Then we take the conditional expectation on both sides to get

+1 =  (+1+2) +  +1 =  +2 +  +1 (20)

where the second equality sign is due to the law of iterated expectations, which says that

(+1+2) = +2 (21)
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see Box 1. Inserting (20) into (19) then gives

 = 2+2 +  +1 +   (22)

The procedure is repeated by forwarding (19) two periods ahead; then taking the condi-

tional expectation and inserting into (22), we get

 = 3+3 + 2 +2 +  +1 +  

We continue in this way and the general form (for  = 0 1 2 ) becomes

+ =  +(++1) +  +

+ =  ++1 +  +

 = +1++1 +  + 

X
=1

+ (23)

Box 1. The law of iterated expectations

The method of repeated forward substitution is based on the law of iterated expecta-

tions which says that (+1+2) = +2 as in (21). The logic is the fol-

lowing. Events in period + 1 are stochastic as seen from period  and so +1+2
(the expectation conditional on these events) is a stochastic variable. Then the law

of iterated expectations says that the conditional expectation of this stochastic variable

as seen from period  is the same as the conditional expectation of +2 itself as seen

from period  So, given that expectations are rational, then an earlier expectation of

a later expectation of  is just the earlier expectation of . Put differently: my best

forecast today of how I am going to forecast tomorrow a share price the day after

tomorrow, will be the same as my best forecast today of the share price the day after

tomorrow. If beforehand we have good reasons to expect that we will revise our

expectations upward, say, when next period’s additional information arrives, the

original expectation would be biased, hence not rational.9

4.2 The fundamental solution

PROPOSITION 1 Consider the expectation difference equation (19), where  6= 0 If

lim
→∞

X
=1

+ exists, (24)

9A formal account of conditional expectations and the law of iterated expectations is given in Appendix

B.
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then

 = 

∞X
=0

+ =  + 

∞X
=1

+ ≡ ∗   = 0 1 2  (25)

is a solution to the equation.

Proof Assume (24). Then the formula (25) is meaningful. In view of (23), it satisfies

(19) if and only if lim→∞ +1++1 = 0 Hence, it is enough to show that the process

(25) satisfies this latter condition.

In (25), replace  by + + 1 to get ++1 = 
P∞

=0 
++1++1+ Using the law

of iterated expectations, this yields

++1 = 

∞X
=0

++1+ so that

+1++1 =  +1
∞X
=0

++1+ = 

∞X
=+1

+

It remains to show that lim→∞
P∞

=+1 
+ = 0 From the identity

∞X
=1

+ =

X
=1

+ +

∞X
=+1

+

follows ∞X
=+1

+ =

∞X
=1

+ −
X

=1

+

Letting →∞ this gives

lim
→∞

∞X
=+1

+ =

∞X
=1

+ −
∞X
=1

+ = 0

which was to be proved. ¤

The solution (25) is called the fundamental solution of (19), often marked by an

asterisk ∗. The fundamental solution is (for  6= 0) defined only when the condition (24)
holds. In general this condition requires that ||  1 In addition, (24) requires that the
absolute value of the expectation of the exogenous variable does not increase “too fast”.

More precisely, the requirement is that |+|, when  → ∞, has a growth factor less
than ||−1  As an example, let 0    1 and   0, and suppose that +  0 for 

= 0 1 2  and that 1 +  is an upper bound for the growth factor of + Then

+ ≤ (1 + )+−1 ≤ (1 + ) = (1 + )
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Multiplying by , we get + ≤ (1 + ) By summing from  = 1 to 

X
=1

+ ≤ 

X
=1

[(1 + )]



Letting →∞ we get

lim
→∞

X
=1

+ ≤  lim
→∞

X
=1

[(1 + )]

= 

(1 + )

1− (1 + )
∞

if 1 +   −1 using the sum rule for an infinite geometric series.

As noted in the proof of Proposition 1, the fundamental solution, (25), has the property

that

lim
→∞

+ = 0 (26)

That is, the expected value of  is not “explosive”: its absolute value has a growth factor

less than ||−1. Given ||  1 the fundamental solution is the only solution of (19) with
this property. Indeed, it is seen from (23) that whenever (26) holds, (25) must also hold.

In Example 1 below,  is interpreted as the market price of a share and  as dividends.

Then the fundamental solution gives the share price as the present value of the expected

future flow of dividends.

EXAMPLE 1 (the fundamental value of an equity share) Consider arbitrage between

shares of stock and a riskless asset paying the constant rate of return   0. Let period

 be the current period. Let + be the market price of the share at the beginning of

period +  and + the dividend paid out at the end of that period, +   = 0 1 2 .

As seen from period  there is uncertainty about + and + for  = 1 2 . An investor

who buys  shares at time  (the beginning of period ) thus invests  ≡  units

of account at time  At the end of the period the gross return comes out as the known

dividend  and the potential sales value of the shares at the beginning of next period.

This is unlike standard accounting and finance notation in discrete time, where  would

be the end-of-period- market value of the stock of shares that begins to yield dividends

in period + 1.10

10Our use of  for the price of a share bought at the beginning of period  is not inconsistent with

our use, in earlier chapters, of  to denote the price, possibly in the same unit of account, per unit

of consumption in period  but paid for at the end of the period. At the beginning of period  after

the uncertainty pertaining to period  has been resolved (thus updating the available information), a

consumer-investor will decide both the investment and the consumption flow for the period. But only

the investment expence,  is disbursed immediately.

It is convenient to think of the course of actions such that receipt of the previous period’s dividend,

−1 and payment for that period’s consumption, at the price −1 occur right before period  begins

and the new information arrives. Indeed, the resolution of uncertainty at discrete points in time motivates

a distinction between “end of” period − 1 and “beginning of” period , where the new information has

just arrived.
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Suppose investors have rational expectations and care only about expected return.

Then the no-arbitrage condition reads

 ++1 − 


=   0 (27)

This can be written

 =
1

1 + 
+1 +

1

1 + 
 (28)

which is of the same form as (19) with  =  = 1(1+ ) ∈ (0 1). Assuming dividends do
not grow “too fast”, we find the fundamental solution, denoted ∗  as

∗ =
1

1 + 
 +

1

1 + 

∞X
=1

1

(1 + )
+ =

∞X
=0

1

(1 + )+1
+ (29)

The fundamental solution is simply the present value of expected future dividends.

If the dividend process is +1 = ++1 where +1 is white noise, then the dividend

process is known as a random walk and + =  for  = 1 2   Thus 
∗
 = , by

the sum rule for an infinite geometric series. In this case the fundamental value is thus

itself a random walk. More generally, the dividend process could be a martingale, that is,

a sequence of stochastic variables with the property that the expected value next period

exists and equals the current actual value, i.e., +1 = ; but in a martingale, +1

≡ +1 −  need not be white noise; it is enough that +1 = 0
11 Given the constant

required return  we still have ∗ =  So the fundamental value itself is in this case a

martingale. ¤

In finance theory the present value of the expected future flow of dividends on an

equity share is referred to as the fundamental value of the share. It is by analogy with

this that the general designation fundamental solution has been introduced for solutions

of form (25). We could also think of  as the market price of a house rented out and

 as the rent. Or  could be the market price of an oil well and  the revenue (net of

extraction costs) from the extracted oil in period 

4.3 Bubble solutions

Other than the fundamental solution, the expectation difference equation (19) has infi-

nitely many bubble solutions. In view of ||  1, these are characterized by violating the
condition (26). That is, they are solutions whose expected value explodes over time.

11A random walk is thus a special case of a martingale.
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It is convenient to first consider the homogenous expectation equation associated with

(19). This is defined as the equation emerging when setting  = 0 in (19):

 = +1 (30)

Every stochastic process {} of the form

+1 = −1 + +1, where +1 = 0 (31)

has the property that

 = +1 (32)

and is thus a solution to (30). The “disturbance” +1 represents “new information” which

may be related to movements in “fundamentals”, +1 But it does not have to. In fact,

+1 may be related to conditions that per se have no economic relevance whatsoever.

For ease of notation, from now on we just write  even if we think of the whole process

{} rather than the value taken by  in the specific period  The meaning should be clear
from the context. A solution to (30) is referred to as a homogenous solution associated

with (19). Let  be a given homogenous solution and let  be an arbitrary constant.

Then  =  is also a homogenous solution (try it out for yourself). Conversely, any

homogenous solution  associated with (19) can be written in the form (31). To see this,

let  be a given homogenous solution, that is,  = +1. Let +1 = +1 − +1.

Then

+1 = +1 + +1 = −1 + +1

where +1 = +1 −+1 = 0. Thus,  is of the form (31).

For convenience we here repeat our original expectation difference equation (19):

 = +1 +       = 0 1 2      6= 0 (*)

PROPOSITION 2 Consider the expectation difference equation (*). Let ̃ be a particular

solution to the expectation difference equation (19), where  6= 0 Then:
(i) every stochastic process of the form

 = ̃ +  (33)

where  satisfies (31), is a solution to (*);

(ii) every solution to (*) can be written in the form (33) with  being an appropriately

chosen homogenous solution associated with (*).
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Proof. Let some particular solution ̃ be given. (i) Consider  = ̃+ where  satisfies

(31). Since ̃ satisfies (*), we have  =  ̃+1 +   + . Consequently, by (30),

 =  ̃+1 +   +  +1 =  (̃+1 + +1) +   =  +1 +  

saying that (33) satisfies (*). (ii) Let  be an arbitrary solution to (*). Define  = −̃.
Then we have

 =  − ̃ = +1 +  − (̃+1 + )

= (+1 − ̃+1) = +1

where the second equality follows from the fact that both  and ̃ are solutions to (*).

This shows that  is a solution to the homogenous equation (30) associated with (*).

Since  = ̃ + , the proposition is hereby proved. ¤

Proposition 2 holds for any  6= 0 In case the fundamental solution (25) exists and
||  1, it is convenient to choose this solution as the particular solution in (33). Thus,

referring to the right-hand side of (25) as ∗ , we can use the particular form,

 = ∗ +  (34)

When the component  is different from zero, the solution (34) is called a bubble

solution and  is called the bubble component. In the typical economic interpretation

the bubble component shows up only because it is expected to show up next period, cf.

(32). The name bubble springs from the fact that the expected value conditional on the

information available in period  explodes over time when ||  1. To see this, as an

example, let 0    1 Then, from (30), by repeated forward substitution we get

 =  (+1+2) = 2+2 =  = +  = 1 2 

It follows that + = −, and from this follows that the bubble, for  going to infinity,

is unbounded in expected value:

lim
→∞

+ =

½ ∞, if   0
−∞ if   0

 (35)

Indeed, the absolute value of + will for rising  grow geometrically towards infinity

with a growth factor equal to 1  1

Let us consider a special case of (*19) that allows a simple graphical illustration of

both the fundamental solution and some bubble solutions.
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Figure 1: Deterministic bubbles (the case 0    1   0 and  = ̄)

4.3.1 When  has constant mean

Suppose the stochastic process  (the “fundamentals”) takes the form  = ̄+  where

̄ is a constant and  is white noise. Then

 =  +1 + (̄+ ) 0  ||  1 (36)

The fundamental solution is

∗ =   + 

∞X
=1

̄ = ̄+  + 
̄

1− 
=

̄

1− 
+ 

Referring to (i) of Proposition 2,

 =
̄

1− 
+  +  (37)

is thus also a solution of (36) if  is of the form (31).

It may be instructive to consider the case where all stochastic features are eliminated.

So we assume  ≡  ≡ 0. Then we have a model with perfect foresight; the solution (37)
simplifies to

 =
̄

1− 
+ 0

− (38)

where we have used repeated backward substitution in (31). By setting  = 0 we see that

0 =
̄
1− + 0 Inserting this into (38) gives

 =
̄

1− 
+ (0 − ̄

1− 
)− (39)

In Fig. 1 we have drawn three trajectories for the case 0    1,   0. Trajectory

I has 0 = ̄(1 − ) and represents the fundamental solution. Trajectory II, with 0
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 ̄(1−) and trajectory III, with 0  ̄(1−) are bubble solutions. Since we have
imposed no boundary condition apriori, one 0 is as good as any other. The interpretation

is that there are infinitely many trajectories with the property that if only the economic

agents expect the economy will follow that particular trajectory, the aggregate outcome of

their behavior will be that this trajectory is realized. This is the potential indeterminacy

arising when  is not a predetermined variable. However, as alluded to above, in a

complete economic model there will often be restrictions on the endogenous variable(s)

not visible in the basic expectation difference equation(s), here (36). It may be that

the economic meaning of  precludes negative values (a share certificate would be an

example). In that case no-one can rationally expect a path such as III in Fig. 1. Or

perhaps, for some reason, there is an upper bound on  (think of the full-employment

ceiling for output in a situation where the “natural” growth factor for output is smaller

than −1). Then no one can rationally expect a trajectory like II in the figure.

To sum up: in order for a solution of a first-order linear expectation difference equation

with constant coefficient , where ||  1 to differ from the fundamental solution, the

solution must have the form (34) where  has the form described in (31). This provides

a clue as to what asset price bubbles might look like.

4.3.2 Asset price bubbles

A stylized fact of stock markets is that stock price indices are quite volatile on a month-to-

month, year-to-year, and especially decade-to-decade scale, cf. Fig. 2. There are different

views about how these swings should be understood. According to the Efficient Market

Hypothesis the swings just reflect unpredictable changes in the “fundamentals”, that is,

changes in the present value of rationally expected future dividends. This is for instance

the view of Nobel laureate Eugene Fama (1970, 2003) from University of Chicago.

In contrast, Nobel laureate Robert Shiller (1981, 2003, 2005) from Yale University,

and others, have pointed to the phenomenon of “excess volatility”. The view is that asset

prices tend to fluctuate more than can be rationalized by shifts in information about

fundamentals (present values of dividends). Although in no way a verification, graphs

like those in Fig. 2 and Fig. 3 are suggestive. Fig. 2 shows the monthly real Standard

and Poors (S&P) composite stock prices and real S&P composite earnings for the period

1871-2008. The unusually large increase in real stock prices since the mid-90’s, which

ended with the collapse in 2000, is known as the “dot-com bubble”. Fig. 3 shows, on a

monthly basis, the ratio of real S&P stock prices to an average of the previous ten years’
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Figure 2: Monthly real S&P composite stock prices from January 1871 to January 2008 (left)

and monthly real S&P composite earnings from January 1871 to September 2007 (right). Source:

http://www.econ.yale.edu/~shiller/data.htm.

real S&P earnings along with the long-term real interest rate. It is seen that this ratio

reached an all-time high in 2000, by many observers considered as “the year the dot-com

bubble burst”.

Shiller’s interpretation of the large stock market swings is that they are due to fads,

herding, and shifts in fashions and “animal spirits” (the latter being a notion from

Keynes).

A third possible source of large stock market swings was pointed out by Blanchard

(1979) and Blanchard and Watson (1982). They argued that bubble phenomena need

not be due to irrational behavior and absence of rational expectations. This lead to the

theory of rational bubbles − the idea that excess volatility can be explained as speculative
bubbles arising from self-fulfilling rational expectations.

Consider an asset which yields either dividends or services in production or consump-

tion in every period in the future. The fundamental value of the asset is, at the theoretical

level, defined as the present value of the expected future flow of dividends or services.12

An asset price bubble (or a speculative bubble) is then defined as a positive deviation of

12In practice there are many ambiguities involved in this definition of the fundamental value because

it relates to an unknown future.
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Figure 3: S&P price-earnings ratio and long-term real interest rates from January 1881

to January 2008. The earnings are calculated as a moving average over the preceding

ten years. The long-term real interest rate is the 10-year Treasury rate from 1953 and

government bond yields from Sidney Homer, “A History of Interest Rates” from before

1953. Source: http://www.econ.yale.edu/~shiller/data.htm.

25



the market price,  of the asset from its fundamental value, ∗ :

 =  − ∗  (40)

An asset price bubble that emerges in a setting where the no-arbitrage condition (27)

holds under rational expectations, is called a rational bubble. It emerges only because

there is an economy-wide self-fulfilling expectation that it will appreciate at a rate high

enough to warrant the overcharge involved. In the definition in (40) and in the discussion

below we ignore that at a less abstract level it is a systematic deviation, rather than just

a temporary noise deviation, of  from ∗ which qualifies for an asset price bubble.

EXAMPLE 2 (an ever-expanding rational bubble) Consider again an equity share for

which the no-arbitrage condition is

 ++1 − 


=   0 (41)

As in Example 1, the implied expectation difference equation is  = +1+ with 

=  = 1(1+) ∈ (0 1) Let the price of the share at time  be  = ∗ + where 
∗
 is the

fundamental value and   0 a bubble component following the deterministic process,

+1 = (1+) 0  0 so that  = 0(1+)
 This is called a deterministic rational bubble.

Agents may be ready to pay a price over and above the fundamental value (whether or

not they know the “true” fundamental value) if they expect they can sell at a sufficiently

higher price later; trading with such motivation is called speculative behavior. If generally

held and lasting for some time, this expectation may be self-fulfilling. Note that (41)

implies that the asset price ultimately grows at the rate . Indeed, let  = 0(1 + )

   (if  ≤  the asset price would be infinite). By the rule of the sum of an infinite

geometrice series, we then have ∗ = (−) showing that the fundamental value grows
at the rate  Consequently,  = (

∗
 + ) = ∗+1→ 1 as    It follows that

the asset price in the long run grows at the same rate as the bubble, the rate 

We are not acquainted with ever-expanding incidents of that caliber in real world

situations, however. A deterministic rational bubble is implausible. ¤

In some contexts it may not matter whether or not we think of the “rational” market

participants as knowing the probability distribution of the “fundamentals”, hence knowing

∗ (by “fundamentals” is meant any information relating to the future dividend or service

capacity of an asset: a firm’s technology, resources, market conditions etc.). All the same,

it seems common to imply such a high level of information in the term “rational bubbles”.

Unless otherwise indicated, we shall let this implication be understood.
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While a deterministic rational bubble was found implausible, let us now consider an

example of a stochastic rational bubble which sooner or later bursts.

EXAMPLE 3 (a bursting bubble) Once again we consider the no-arbitrage condition is

(41) where for simplicity we still assume the required rate of return is constant, though

possibly including a risk premium. Following Blanchard (1979), we assume that the

market price,  of the share contains a stochastic bubble of the following form:

+1 =

½
1+

 with probability 

0 with probability 1− 
(42)

where  = 0 1 2  and 0  0. In addition we may assume that  = (∗  ) ∗ ≥ 0
 ≤ 0 If ∗  0 the probability that the bubble persists at least one period ahead is

higher the greater the fundamental value has become. If   0 the probability that

the bubble persists at least one period ahead is less, the greater the bubble has already

become. In this way the probability of a crash becomes greater and greater as the share

price comes further and further away from fundamentals. As a compensation, the longer

time the bubble has lasted, the higher is the expected growth rate of the bubble in the

absence of a collapse.

This bubble satisfies the criterion for a rational bubble. Indeed, (42) implies

 +1 = (
1 + 

+1
)+1 + 0 · (1− +1) = (1 + )

This is of the form (31) with −1 = 1 +  and the bubble is therefore a stochastic

rational bubble. The stochastic component is +1 = +1 − +1 = +1 − (1 + )

and has conditional expectation equal to zero. Although +1 must have zero conditional

expectation, it need not be white noise (it can for instance have varying variance). ¤

As this example illustrates, a stochastic rational bubble does not have the implausible

ever-expanding form of a deterministic rational bubble. Yet, under certain conditions

even stochastic rational bubbles can be ruled out or at least be judged implausible. The

next section reviews some arguments.

4.4 When rational bubbles in asset prices can or can not be

ruled out

We concentrate on assets whose services are valued independently of the price.13 Let 

be the market price and ∗ the fundamental value of the asset as of time . Even if the

13This is in contrast to assets that serve as means of payment.
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asset yields services rather than dividends, we think of ∗ as in principle the same for all

agents. This is because a user who, in a given period, values the service flow of the asset

relatively low can hire it out to the one who values it highest (the one with the highest

willingness to pay). Until further notice we assume ∗ known to the market participants.

4.4.1 Partial equilibrium arguments

The principle of reasoning to be used is called backward induction: If we know something

about an asset price in the future, we can conclude something about the asset price today.

(a) Assets which can be freely disposed of (“free disposal”) Can a rational asset

price bubble be negative? The answer is no. The logic can be illustrated on the basis

of Example 2 above. For simplicity, let the dividend be the same constant   0 for all

 = 0 1 2 . Then, from the formula (39) we have

 − ∗ = (0 − ∗)(1 + )

where   0 and ∗ =  Suppose there is a negative bubble in period 0, i.e., 0−∗  0
In period 1, since 1 +   1 the bubble is greater in absolute value. The downward

movement of  continues and sooner or later  is negative. The intuition is that the

low 0 in period 0 implies a high dividend-price ratio. Hence a negative capital gain

(+1 −   0) is needed for the no-arbitrage condition (41) to hold. Thereby 1  0

and so on.

But in a market with self-interested rational agents, an object which can be freely

disposed of can never have a negative price. A negative price means that the “seller”

has to pay to dispose of the object. Nobody will do that if the object can just be

thrown away. An asset which can be freely disposed of (share certificates for instance)

can therefore never have a negative price. We conclude that a negative rational bubble

can not be consistent with rational expectations. Similarly, with a stochastic dividend,

a negative rational bubble would imply that in expected value the share price becomes

negative at some point in time, cf. (35). Again, rational expectations rule this out.

Hence, if we imagine that for a short moment   ∗ , then everyone will want to buy

the asset and hold it forever, which by own use or by hiring out will imply a discounted

value equal to ∗  There is thus excess demand until  has risen to 
∗
 

When a negative rational bubble can be ruled out, then, if at the first date of trading

of the asset there were no positive bubble, neither can a positive bubble arise later. Let
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us make this precise:

PROPOSITION 3 Assume free disposal of a given asset. Then, if a rational bubble in the

asset price is present today, it must be positive and must have been present also yesterday

and so on back to the first date of trading the asset. And if a rational bubble bursts, it

will not restart later.

Proof As argued above, in view of free disposal, a negative rational bubble in the asset

price can be ruled out. It follows that  =  − ∗ ≥ 0 for  = 0 1 2  where  = 0 is
the first date of trading the asset. That is, any rational bubble in the asset price must be

a positive bubble. We now show by contradiction that if, for an arbitrary  = 1 2  it

holds that   0 then −1  0. Let   0 Then, if −1 = 0 we have −1 = −1

= 0 (from (31) with  replaced by −1), implying, since   0 is not possible, that  = 0
with probability one as seen from period −1 Ignoring zero probability events, this rules
out   0 and we have arrived at a contradiction. Thus −1  0 Replacing  by  − 1
and so on backward in time, we end up with 0  0. This reasoning also implies that if

a bubble bursts in period , it can not restart in period  + 1 nor, by extension, in any

subsequent period. ¤

This proposition (due to Diba and Grossman, 1988) claims that a rational bubble in

an asset price must have been there since trading of the asset began. Yet such a conclusion

is not without ambiguities. If new information about radically new technology comes up

at some point in time, is a share in the firm then the same asset as before? In a legal

sense the firm is the same, but is the asset also the same? Even if an earlier bubble has

crashed, cannot a new rational bubble arise later in case of an utterly new situation?

These ambiguities reflect the difficulty involved in the concepts of rational expectations

and rational bubbles when we are dealing with uncertainties about future developments of

the economy. The market’s evaluation of many assets of macroeconomic importance, not

the least shares in firms, depends on vague beliefs about future preferences, technologies,

and societal circumstances. The fundamental value can not be determined in any objective

way. There is no well-defined probability distribution over the potential future outcomes.

Fundamental uncertainty, also called Knightian uncertainty,14 is present.

(b) Bonds with finite maturity The finite maturity ensures that the value of the bond

is given at some finite future date. Therefore, if there were a positive bubble in the market

14After the Chicago of University economist Frank Knight who in his book, Risk, Uncertainty, and

Profit (1921), coined the important distinction between measurable risk and unmeasurable uncertainty.
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price of the bond, no rational investor would buy just before that date. Anticipating this,

no one would buy the date before, and so on. Consequently, nobody will buy in the first

place. By this backward-induction argument follows that a positive bubble cannot get

started. And since there also is “free disposal”, all rational bubbles can be precluded.

From now on we take as given that negative rational bubbles are ruled out. So, the

discussion is about whether positive rational asset price bubbles may exist or not.

(c) Assets whose supply is elastic Real capital goods (including buildings) can be

reproduced and have clearly defined costs of reproduction. This precludes rational bubbles

on this kind of assets, since a potential buyer can avoid the overcharge by producing

instead. Notice, however, that building sites with a specific amenity value and apartments

in attractive quarters of a city are not easily reproducible. Therefore, rational bubbles on

such assets are more difficult to rule out.

Here are a few intuitive remarks about bubbles on shares of stock in an established

firm. An argument against a rational bubble might be that if there were a bubble, the

firm would tend to exploit it by issuing more shares. But thereby market participants

mistrust is raised and may pull market evaluation back to the fundamental value. On

the other hand, the firm might anticipate this adverse response from the market. So the

firm chooses instead to “fool” the market by steady financing behavior, calmly enjoying

its solid equity and continuing as if no bubble were present. It is therefore not obvious

that this kind of argument can rule out rational bubbles on shares of stock.

(d) Assets for which there exists a “backstop-technology” For some articles of

trade there exists substitutes in elastic supply which will be demanded if the price of

the article becomes sufficiently high. Such a substitute is called a “backstop-technology”.

For example oil and other fossil fuels will, when their prices become sufficiently high,

be subject to intense competition from substitutes (renewable energy sources). This

precludes an unbounded bubble process in the price of oil.

On account of the arguments (c) and (d), it seems more difficult to rule out rational

bubbles when it comes to assets which are not reproducible or substitutable, let alone

assets whose fundamentals are difficult to ascertain. For some assets the fundamentals

are not easily ascertained. Examples are paintings of past great artists, rare stamps,

diamonds, gold etc. Also new firms that introduce completely novel products and tech-

nologies are potential candidates. Think of the proliferation of radio broadcasting in the
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1920s before the wall Street crash in 1929 and the internet in the 1990s before the dotcom

bubble burst in 2000.

What these situations allow for may not be termed rational bubbles, if by definition

this concept requires a well-defined fundamental. Then we may think of a broader class

of real-world bubbly phenomena driven by self-reinforcing expectations.

4.4.2 Adding general equilibrium arguments

The above considerations are of a partial equilibrium nature. On top of this, general

equilibrium arguments can be put forward to limit the possibility of rational bubbles. We

may briefly give a flavour of two such general equilibrium arguments. We still consider

assets whose services are valued independently of the price and which, as in (a) above,

can be freely disposed of. A house, a machine, or a share in a firm yields a service in

consumption or production or in the form of a dividend stream. Since such an asset has

an intrinsic value, ∗  equal to the present value of the flow of services, one might believe

that positive rational bubbles on such assets can be ruled out in general equilibrium.

As we shall see, this is indeed true for an economy with a finite number of “neoclassical”

households (to be defined below), but not necessarily in an overlapping generations model.

Yet even there, rational bubbles can under certain conditions be ruled out.

(e) An economy with a finite number of infinitely-lived households Assume

that the economy consists of a finite number of infinitely-lived agents − here called house-
holds − indexed  = 1 2   . The households are “neoclassical” in the sense that they

save only with a view to future consumption.

Under free disposal in point (a) we saw that   ∗ can not be an equilibrium. We

now consider the case of a positive bubble, i.e.,   ∗  All owners of the bubble asset

who are users will in this case prefer to sell and then rent; this would imply excess supply

and could thus not be an equilibrium. Hence, we turn to households that are not users,

but speculators. Assuming “short selling” is legal, speculators may pursue “short selling”,

that is, they first rent the asset (for a contracted interval of time) and immediately sell

it at . This results in excess supply and so the asset price falls towards 
∗
 . Within the

contracted interval of time the speculators buy the asset back and return it to the original

owners in accordance with the loan accord. So   ∗ can not be an equilibrium.

Even ruling out “short selling” (which is sometimes outright forbidden), we can ex-

clude positive bubbles in the present setup with a finite number of households. To assume
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that owners who are not users would want to hold the bubble asset forever as a permanent

investment will contradict that these owners are “neoclassical”. Indeed, their transver-

sality condition would be violated because the value of their wealth would grow at a rate

asymptotically equal to the rate of interest. This would allow them to increase their

consumption now without decreasing it later and without violating their No-Ponzi-Game

condition.

We have to instead imagine that the “neoclassical” households who own the bubble

asset, hold it against future sale. This could on the face of it seem rational enough

if there were some probability that not only would the bubble continue to exist, but

it would also grow so that the return would be at least as high as that yielded on an

alternative investment. Owners holding the asset in the expectation of a capital gain, will

thus plan to sell at some later point in time. Let  be the point in time where household

 wishes to sell and let

 = max{1 2  }
Then nobody will plan to hold the asset after  The household speculator,  having

 =  will thus not have anyone to sell to (other than people who will only pay ∗ )

Anticipating this, no-one would buy or hold the asset the period before, and so on. So

no-one will want to buy or hold the asset in the first place.

The conclusion is that   ∗ cannot be a rational expectations equilibrium in a setup

with a finite number of “neoclassical” households.

The same line of reasoning does not, however, go through in an overlapping generations

model where new households − that is, new traders − enter the economy every period.

(f) An economy with interest rate above the output growth rate In an overlap-

ping generations (OLG) model with an infinite sequence of new decision makers, rational

bubbles are under certain conditions theoretically possible. The argument is that with

 →∞  as defined above is not bounded. Although this unboundedness is a necessary

condition for rational bubbles, it is not sufficient, however.

To see why, let us return to the arbitrage examples 1, 2, and 3 where we have −1 =

1 +  so that a hypothetical rational bubble has the form +1 = (1 + ) ++1 where

+1 = 0 So in expected value the hypothetical bubble is growing at a rate equal to

the interest rate,  If at the same time  is higher than the long-run output growth rate,

the value of the expanding bubble asset would sooner or later be larger than GDP and

aggregate saving would not suffice to back its continued growth. Agents with rational
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expectations anticipate this and so the bubble never gets started.

This point is valid when the interest rate in the OLG economy is higher than the

growth rate of the economy − which is normally considered the realistic case. Yet, the
opposite case is possible and in that situation it is less easy to rule out rational asset

price bubbles. This is also the case in situations with imperfect credit markets. It turns

out that the presence of segmented financial markets or externalities that create a wedge

between private and social returns on productive investment may increase the scope for

rational bubbles (Blanchard, 2008).

4.5 Conclusion

The empirical evidence concerning asset price bubbles in general and rational asset price

bubbles in particular seems inconclusive. It is very difficult to statistically distinguish

between bubbles and mis-specified fundamentals. Rational bubbles can also have more

complicated forms than the bursting bubble in Example 3 above. For example Evans

(1991) and Hall et al. (1999) study “regime-switching” rational bubbles.

Whatever the possible limits to the plausibility of rational bubbles in asset prices, it is

useful to be aware of their logical structure and the variety of forms they can take as logical

possibilities. Rational bubbles may serve as a benchmark for a variety of “behavioral asset

price bubbles”, i.e., bubbles arising through particular psychological mechanisms. This

would take us to behavioral finance theory. The reader is referred to, e.g., Shiller (2003).

For surveys on the theory of rational bubbles and econometric bubble tests, see Salge

(1997) and Gürkaynak (2008). For discussions of famous historical bubble episodes, see

the symposium in Journal of Economic Perspectives 4, No. 2, 1990, and Shiller (2005).

5 Appendix

A. The log-linear specification

In many macroeconomic models with rational expectations the equations are specified as

log-linear, that is, as being linear in the logarithms of the variables. If   and  are

the original positive stochastic variables, defining  = ln ,  = ln and  = ln, a

log-linear relationship between   and  is a relation of the form

 = + +  (43)
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where   and  are constants. The motivation for assuming log-linearity can be:

(a) Linearity is convenient because of the simple rule for the expected value of a sum:

(++) = +()+(), where  is the expectation operator. Indeed,

for a non-linear function, ( ) we generally have (( )) 6= (() ()).

(b) Linearity in logs may often seem a more realistic assumption than linearity in any-

thing else.

(c) In time series models a logarithmic transformation of the variables followed by

formation of first differences can be the road to eliminating a trend in the mean

and variance.

As to point (b) we state the following:

CLAIM To assume linearity in logs is equivalent to assuming constant elasticities.

Proof Let the positive variables  ,  and  be related by  =  (, ), where  is a

continuous function with continuous partial derivatives. Taking the differential on both

sides of ln  = ln () we get

 ln =
1

 ()




 +

1

 ()




 (44)

=











+












=  




+  




=   ln +   ln

where   and   are the partial elasticities of  w.r.t.  and , respectively. Thus,

defining  = ln ,  = ln and  = ln, gives

 =  +   (45)

Assuming constant elasticities amounts to putting   =  and   = , where  and

 are constants. Then we can write (45) as  = + . By integration, we get (43)

where  is now an arbitrary integration constant. Hereby we have shown that constant

elasticities imply a log-linear relationship between the variables.

Now, let us instead start by assuming the log-linear relationship (43). Then,




= 




=  (46)

But (43), together with the definitions of ,  and  implies that

 = ++ = + ln+ ln 
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from which follows that




=  

1


so that   ≡








= 

and



=  

1


so that   ≡








= 

That is, the partial elasticities are constant. ¤

So, when the variables are in logs, then the coefficients in the linear expressions are

the elasticities. Note, however, that the interest rate is normally an exception. It is often

regarded as more realistic to let the interest rate itself and not its logarithm enter linearly.

Then the associated coefficient indicates the semi-elasticity with respect to the interest

rate.

B. Conditional expectations and the law of iterated expectations

The mathematical conditional expectation is a weighted sum of the possible values of the

stochastic variable with weights equal to the corresponding conditional probabilities.

Let  and be two discrete stochastic variables with joint probability function ( )

and marginal probability functions () and () respectively. If the conditional probabil-

ity function for  given  = 0 is denoted ( |0)  we have ( |0) = ( 0)(0) as-

suming (0)  0 The conditional expectation of  given = 0 denoted ( | = 0)

is then

( | = 0) =
X



( 0)

(0)
 (47)

where the summation is over all the possible values of 

This conditional expectation is a function of 0 Since 0 is just one possible value of

the stochastic variable  we interpret the conditional expectation itself as a stochastic

variable and write it as( |)Generally, for a function of the discrete stochastic variable
 say () the expected value is

(()) =
X


()()

When we here let the conditional expectation ( |) play the role of () and sum over
all  for which ()  0 we get

(( |)) =
X


( |)() =
X


ÃX



( )

()

!
() (by (47))

=
X




ÃX


( )

!
=
X


() = ( )
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This result is a manifestation of the law of iterated expectations: the unconditional

expectation of the conditional expectation of  is given by the unconditional expectation

of 

Now consider the case where  and  are continuous stochastic variables with joint

probability density function ( ) and marginal density functions () and () respec-

tively. If the conditional density function for  given  = 0 is denoted ( |0)  we have
( |0) = ( 0)(0) assuming (0)  0 The conditional expectation of  given

 = 0 is

( | = 0) =

Z ∞

−∞

( 0)

(0)
 (48)

where we have assumed that the range of  is (−∞∞) Again, we may view the condi-
tional expectation itself as a stochastic variable and write it as ( |) Generally, for a
function of the continuous stochastic variable  say () the expected value is

(()) =

Z


()()

where  stands for the range of When we let the conditional expectation ( |) play
the role of () we get

(( |)) =

Z


( |)() =
Z


µZ ∞

−∞

( )

()


¶
() (by (48))

=

Z ∞

−∞


µZ


( )

¶
 =

Z ∞

−∞
() = ( ) (49)

This shows us the law of iterated expectations in action for continuous stochastic

variables: the unconditional expectation of the conditional expectation of  is given by

the unconditional expectation of 

EXAMPLE Let the two stochastic variables,  and  follow a two-dimensional normal

distribution. Then, frommathematical statistics we know that the conditional expectation

of  given  satisfies

( |) = ( ) +
Cov()

Var()
( −())

Taking expectations on both sides gives

(( |)) = ( ) +
Cov()

Var()
(()−()) = ( ) ¤

We may also express the law of iterated expectations in terms of subsets of the original

outcome space for a stochastic variable. Let the event A be a subset of the outcome space
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for  and let B be a subset of A. Then the law of iterated expectations takes the form

(( |B)|A) = ( |A) (50)

That is, when B ⊆ A the expectation, conditional on A of the expectation of  , condi-
tional on B, is the same as the expectation, conditional on A, of 
In the text of this and the subsequent chapters we consider a dynamic context where

expectations are conditional on dated information − ( = 1 2 ). By a, so far, “informal

analogy” with (49) we then write the law of iterated expectations this way:

((|−)) = () for  = 1 2  (51)

In words: the unconditional expectation of the conditional expectation of  given the

information up to time −  equals the unconditional expectation of  Similarly, by a,

so far, “informal analogy” with (50) we may write

((+2|+1)|) = (+2|) (52)

That is, the expectation today of the expectation tomorrow, when more may be known,

of a variable the day after tomorrow is the same as the expectation today of the variable

the day after tomorrow. Intuitively: you ask a stockbroker in which direction she expects

to revise her expectations upon the arrival of more information. If the broker answers

“upward”, say, then another broker is recommended.

The notation used in the transition from (50) to (52) might seem problematic, though.

That is why we talk of “informal analogy”. The sets A and B are subsets of the outcome
space and B ⊆ A In contrast, the “information” or “information content” represented by
our symbol  will, for the uninitiated, inevitably be understood in a meaning not fitting

the inclusion +1 ⊆ . Intuitively “information” dictates the opposite inclusion, namely

as a set which expands over time − more and more “information” (like “knowledge” or
“available data”) is revealed as time proceeds.

It is possible, however, to interpret the information  from another angle so as to

make the notation in (52) fully comply with that in (50). Let the outcome space Ω denote

the set of ex ante possible15 sequences {()}=0  where  and  are vectors of

date- endogenous and exogenous stochastic variables, respectively, and where  is the

time horizon, possibly  = ∞. For  ∈ {0 0 + 1 . . .  0 + }  let the subset Ω ⊆ Ω

be defined as the of time  still possible sequences {()}0+=0
 Now, as time proceeds,

15By “possible” is meant “ex ante feasible according to a given model”.
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more and more realizations occur, that is, more and more of the ex ante random states

( ) become historical data, ( ) Hence, as time proceeds, the subset Ω shrinks

in the sense that Ω+1 ⊆ Ω. The increasing amount of information and the “reduced

uncertainty” can thus be seen as two sides of the same thing. Interpreting  this way,

i.e., as “partial lack of uncertainty”, the expression (52) means the same thing as

((+2|Ω+1)|Ω) = (+2|Ω)

This is in complete harmony with (50).

C. Properties of the model-consistent forecast

As in the text of Section 24.2.2, let  denote the model-consistent forecast error  −
(|−1) Then, if −1 represents information contained in −1,

( |−1) = ( −( |−1) |−1) = ( |−1)−(( |−1) |−1)
= ( |−1)−( |−1) = 0 (53)

where we have used that (( |−1) |−1) = ( |−1)  by the law of iterated expec-
tations. With −1 = −1 we have, as a special case,

( |−1) = 0 as well as (54)

() = ( −( |−1)) = ()−(( |−1)) = 0

in view of (51) with  = 1. This proves property (a) in Section 24.2.3.

As to property (b) in Section 24.2.2, for  = 1 2  let − be an arbitrary variable

value belonging to the information −. Then, (− |−) = −( |−) = 0 by

(53) with −1 = − (since − is contained in −1). Thus, by the principle (51),

(−) =  ((− |−)) = (0) = 0 for  = 1 2  (55)

This result is known as the orthogonality property of model-consistent expectations (two

stochastic variables  and  are said to be orthogonal if ( ) = 0) From the general

formula for the (unconditional) covariance follows

Cov(−) = (−)−()(−) = 0− 0 = 0 for  = 1 2 

by (54) and (55). In particular, with − = − we get Cov(−) = 0 This proves that

model-consistent forecast errors exhibit lack of serial correlation.
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6 Exercises

1. Let {} be a stochastic process in discrete time. Suppose  =  + , where

 = −1 +  and  and  are white noise.

a) Is {} a random walk? Why or why not?

b) Is {} a random walk? Why or why not?

c) Calculate the rational expectation of  conditional on all relevant information up

to and including period − 1.

d) What is the rational expectation of  conditional on all relevant information up to

and including period − 1?

e) Compare with the subjective expectation of  based om the adaptive expectations

formula with adjustment speed equal to one.

2. Consider a simple Keynesian model of a closed economy with constant wages and

prices (behind the scene), abundant capacity, and output determined by demand:

 =  =  + ̄ + (1)

 = +  
−1   0 0    1 (2)

 = (1− )̄+ −1 +  ̄  0 0    1 (3)

where the endogenous variables are  = output (= income),  = aggregate demand,

 = consumption, and 

−1 = expected output (income) in period  as seen from period

−1 while , which stands for government spending on goods and services, is considered

exogenous as is , which is white noise. Finally, investment, ̄, and the parameters  

 and ̄ are given positive constants.

Suppose expectations are “static” in the sense that expected income in period  equals

actual income in the previous period.

a) Solve for .

b) Find the income multiplier (partial derivative of ) with respect to a change in

−1 and  respectively
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Suppose instead that expectations are rational.

c) Explain what this means.

d) Solve for 

e) Find the income multiplier with respect to a change in −1 and  respectively.

f) Compare the result under e) with that under b). Comment.

3. Consider arbitrage between equity shares and a riskless asset paying the constant

rate of return   0. Let  denote the price at the beginning of period  of a share that

at the end of period  yields the dividend . As seen from period  there is uncertainty

about + and + for  = 1 2. . . . Suppose agents have rational expectations and care

only about expected return (risk neutrality).

a) Write down the no-arbitrage condition.

Suppose dividends follow the process  = ̄ +  where ̄ is a positive constant and

 is white noise, observable in period  but not known in advance.

b) Find the fundamental solution for  and let it be denoted ∗ . Hint: given 

= +1 +   the fundamental solution is  =  + 
P∞

=1 
+

Suppose someone claims that the share price follows the process

 = ∗ + 

with a given 0  0 and, for  = 0 1 2. . . ,

+1 =

½
1+

 with probability 

0 with probability 1− 

where  = () 
0  0

c) What is an asset price bubble and what is a rational asset price bubble?

d) Can the described  process be a rational asset price bubble? Hint: a bubble

component associated with the inhomogenous equation  = +1 +   is a

solution, different from zero, to the homogeneous equation,  = +1.

–
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