
Chapter 4

A growing economy

In the previous chapter we ignored technological progress. An incontestable fact
of real life in industrialized countries is, however, the presence of a persistent rise
in GDP per capita − on average between 1.5 and 2.5 percent per year since 1870
in many developed economies. In regard to UK, USA, and Japan, see Fig. 4.1;
and in regard to Denmark, see Fig. 4.2. In spite of the somewhat dubious quality
of the data from before the Second World War, this observation should be taken
into account in a model which, like the Diamond model, aims at dealing with
long-run issues. For example, in relation to the question of dynamic ineffi ciency,
cf. Chapter 3, the cut-offvalue of the steady-state interest rate is the steady-state
GDP growth rate of the economy and this growth rate increases one-to-one with
the rate of technological progress. We shall therefore now introduce technological
progress.

On the basis of a summary of “stylized facts” about growth, Section 4.1
motivates the assumption that technological progress at the aggregate level takes
the Harrod-neutral form. In Section 4.2 we extend the Diamond OLG model by
incorporating this form of technological progress. Section 4.3 extends the concept
of the golden rule to allow for the existence of technological progress. In Section
4.4 what is known as the marginal productivity theory of factor income shares is
addressed. In this connection an expedient analytical tool, the elasticity of factor
substitution, is presented. Section 4.5 goes into detail with the special case of a
constant elasticity of factor substitution (the CES production function). Finally,
Section 4.6 concludes.
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124 CHAPTER 4. A GROWING ECONOMYGDP per capita in United States, United Kingdom and Japan (1870-2010) 

 

 

Sources: Bolt, J. and J. L. van Zanden (2013): The First Update of the Maddison Project; Re-Estimating 

Growth Before 1820. Maddison Project Working Paper 4. 

  

Figure 4.1: GDP per capita in USA, UK, and Japan 1870-2010. Source: Bolt and van
Zanden (2013).

4.1 Harrod-neutrality and Kaldor’s stylized facts

Suppose the technology changes over time in such a way that we can write the
aggregate production function as

Yt = F (Kt, TtLt), (4.1)

where the level of technology is represented by the factor Tt which is growing over
time, and where Yt, Kt, and Lt stand for output, capital input, and labor input,
respectively. When technological change takes this purely “labor-augmenting”
form, it is known as Harrod-neutral technological progress.

Kaldor’s stylized facts

The reason that macroeconomists often assume that technological change at the
aggregate level takes the Harrod-neutral form as in (4.1) and not for example
the form Yt = F (XtKt, TtLt) (where both X and T are changing over time), is
the following. You want the long-run properties of the model to comply with
Kaldor’s list of “stylized facts”(Kaldor 1961) concerning the long-run evolution
of industrialized economies. Abstracting from short-run fluctuations, Kaldor’s
“stylized facts”are:
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4.1. Harrod-neutrality and Kaldor’s stylized facts 125

GDP and GDP per capita in Denmark (1870-2010) 

 

Sources: Bolt, J. and J. L. van Zanden (2013): The First Update of the Maddison Project; Re-Estimating 

Growth Before 1820. Maddison Project Working Paper 4, Maddison (2010): Statistics on World Population, 

GDP and Per Capita GDP, 1-2008 AD, and The Conference Board Total Economy Database (2013). 

Figure 4.2: GDP and GDP per capita. Denmark 1870-2006. Sources: Bolt and van
Zanden (2013); Maddison (2010); The Conference Board Total Economy Database
(2013).

1. the growth rates in K/L and Y/L are roughly constant;

2. the output-capital ratio, Y/K, the income share of labor, wL/Y, and the
average rate of return, (Y − wL− δK)/K,1 are roughly constant;

3. the growth rate of Y/L can vary substantially across countries for quite
long time.

Ignoring the conceptual difference between the path of Y/L and that of Y
per capita (a difference not so important in this context), the figures 4.1 and
4.2 illustrate Kaldor’s “fact 1”about the long-run property of the Y/L path for
the more developed countries. Japan had an extraordinarily high growth rate
for a couple of decades after World War II, usually explained by fast technology
transfer from the most developed countries (the catching-up process which can
only last until the technology gap is eliminated). Fig. 4.3 gives rough support

1In this formula w is the real wage and δ is the capital depreciation rate. Land (and/or
similar natural resources) is ignored. For countries where land is a quantitatively important
production factor, the denominator should be replaced by K + pJJ , where pJ is the real price
of land, J.
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126 CHAPTER 4. A GROWING ECONOMY

for that part of Kaldor’s “fact 2”which claims long-run constancy of the labor
income share. The third fact is a fact well documented empirically.2
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Figure 4.3: Labor’s share of GDP in USA (1950-2011) and Denmark (1970-2011).
Source: Feenstra, Inklaar and Timmer (2013), www.ggdc.net/pwt.

It is fair to add, however, that the claimed regularities 1 and 2 do not fit
all developed countries equally well. While Solow’s growth model (Solow, 1956)
can be seen as the first successful attempt at building a model consistent with
Kaldor’s “stylized facts”, Solow himself once remarked about them: “There is no
doubt that they are stylized, though it is possible to question whether they are
facts”(Solow, 1970). Recently, several empiricists have questioned the methods
which standard national income accounting applies to separate the income of
entrepreneurs, sole proprietors, and unincorporated businesses into labor and
capital income. It is claimed that these methods obscure a tendency in recent
decades of the labor income share to fall.
Notwithstanding these ambiguities, it is definitely a fact that many long-run

models are constructed so a to comply with Kaldor’s stylized facts. Let us briefly
take a look at the Solow model (in discrete time) and check its consistency with
Kaldor’s “stylized facts”. The point of departure of the Solow model, and many
other growth models, is the aggregate dynamic resource constraint for a closed
economy:

Kt+1 −Kt = It − δKt = St − δKt ≡ Yt − Ct − δKt, K0 > 0 given, (4.2)

2For a summary, see Pritchett (1997).
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4.1. Harrod-neutrality and Kaldor’s stylized facts 127

where It is gross investment, which in a closed economy equals gross saving, St

≡ Yt − Ct; δ is a constant capital depreciation rate, 0 ≤ δ ≤ 1.3

The Solow model and Kaldor’s stylized facts

As is well-known, the Solow model postulates a constant aggregate saving-income
ratio, ŝ, so that St = ŝYt, 0 < ŝ < 1.4 Further, the model assumes that the aggre-
gate production function is neoclassical and features Harrod-neutral technological
progress. So, let F in (4.1) be Solow’s production function. To this Solow adds
assumptions of CRS and exogenous geometric growth in both the technology
level T and the labour force L, i.e., Tt = T0(1 + g)t, g ≥ 0, and Lt = L0(1 + n)t,
n > −1. In view of CRS, we have Y = F (K,AL) = TLF (k̃, 1) ≡ TLf(k̃), where
k̃ ≡ K/(TL) is the effective capital-labor ratio while f ′ > 0 and f ′′ < 0.

Substituting St = ŝYt into Kt+1 −Kt = St − δKt, dividing through by Tt(1 +
g)Lt(1 + n) and rearranging gives the “law of motion”of the Solow economy:

k̃t+1 =
ŝf(k̃t) + (1− δ)k̃t

(1 + g)(1 + n)
≡ ϕ(k̃t). (4.3)

Defining G ≡ (1 + g)(1 + n), we have ϕ′(k̃) = (ŝf ′(k̃) + 1− δ)/G > 0 and ϕ′′(k̃)
= ŝf ′′(k̃)/G < 0. If G > 1 − δ and f satisfies the Inada conditions limk̃→0 f

′(k̃)
=∞ and limk̃→∞ f

′(k̃) = 0, there is a unique and globally asymptotically stable
steady state k̃∗ > 0. The transition diagram looks entirely as in Fig. 3.4 of the
previous chapter (ignoring the tildes).5 The convergence of k̃ to k̃∗ implies that
in the long run we have K/L = k̃∗T and Y/L = f(k̃∗)T. Both K/L and Y/L are
consequently growing at the same constant rate as T, the rate g. And constancy of
k̃ implies that Y/K = f(k̃)/k̃ is constant and so is the labor income share, wL/Y
= (f(k̃)−k̃f ′(k̃))/f(k̃), and hence also the net rate of return, (1−wL/Y )Y/K−δ.
It follows that the Solow model complies with the stylized facts 1 and 2 above.

Many different models do that. What these models must then have in common
is a capability of generating balanced growth.

3In both (4.1) and (4.2) it is implicitly assumed, as is usual in simple macroeconomic models,
that technological progress is disembodied rather than embodied, a distinction described in
Section 2.2 of Chapter 2.

4Note that ŝ is a ratio while the s in the Diamond model stands for the saving per young.
5What makes the Solow model so easily tractable compared to the Diamond OLG model

is the constant saving-income ratio which makes the transition function essentially dependent
only on the production function in intensive form. Owing to dimishing marginal productivity
of capital, this is a strictly concave function. Anyway, the Solow model emerges as a special
case of the Diamond model, see Exercise IV.??.
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128 CHAPTER 4. A GROWING ECONOMY

Balanced growth

With Kt, Yt, and Ct denoting aggregate capital, output, and consumption as
above, we define a balanced growth path the following way:

DEFINITION 1 A balanced growth path is a path {(Kt, Yt, Ct)}∞t=0 along which the
variables Kt, Yt, and Ct are positive and grow at constant rates (not necessarily
positive).

At least for a closed economy there is a general equivalence relationship be-
tween balanced growth and constancy of certain key ratios like Y/K and C/Y .
This relationship is an implication of accounting based on the above aggregate
dynamic resource constraint (4.2).
For an arbitrary variable xt ∈ R++, we define ∆xt ≡ xt − xt−1. Whenever

xt−1 > 0, the growth rate of x from t − 1 to t, denoted gx(t), is defined by gx(t)
≡ ∆xt/xt−1. When there is no risk of confusion, we suppress the explicit dating
and write gx ≡ ∆x/x.

PROPOSITION 1 (the balanced growth equivalence theorem). Let {(Kt, Yt, Ct)}∞t=0

be a path along which Kt, Yt, Ct, and St (≡ Yt − Ct) are positive for all t =
0, 1, 2, . . . . Then, given the dynamic resource constraint (4.2), the following holds:
(i) if there is balanced growth, then gY = gK = gC and so the ratios Y/K and
C/Y are constant;
(ii) if Y/K and C/Y are constant, then Y,K, and C grow at the same constant
rate, i.e., not only is there balanced growth but the growth rates of Y, K, and C
are the same.

Proof Consider a path {(Kt, Yt, Ct)}∞t=0 along which K, Y, C, and St ≡ Y − Ct
are positive for all t = 0, 1, 2, . . . .

(i) Suppose the path is a balanced growth path. Then, by definition, gY , gK ,
and gC are constant. Hence, by (4.2), S/K = gK + δ must be constant, implying6

gS = gK . (*)

By (4.2), Y ≡ C + S, and so

gY =
∆Y

Y
=

∆C

Y
+

∆S

Y
=
C

Y
gC +

S

Y
gS =

C

Y
gC +

S

Y
gK (by (*))

=
C

Y
gC +

Y − C
Y

gK =
C

Y
(gC − gK) + gK . (**)

6The ratio between two positive variables is constant if and only if the variables have the
same growth rate (not necessarily constant or positive). For this and similar simple growth-
arithmetic rules, see Appendix A.
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4.1. Harrod-neutrality and Kaldor’s stylized facts 129

Let us provisionally assume that gC 6= gK . Then (**) gives

C

Y
=
gY − gK
gC − gK

, (***)

a constant since gY , gK , and gC are constant. Constancy of C/Y requires gC = gY ,
hence, by (***), C/Y = 1, i.e., C = Y. In view of Y ≡ C + S, however, this
implication contradicts the given condition that S > 0. Hence, our provisional
assumption and its implication (***) are falsified. Instead we have gC = gK . By
(**), this implies gY = gK = gC , but now without the condition C/Y = 1 being
implied. It follows that Y/K and C/Y are constant.
(ii) Suppose Y/K and C/Y are positive constants. Applying that the ratio

between two variables is constant if and only if the variables have the same (not
necessarily constant or positive) growth rate, we can conclude that gY = gK = gC .
By constancy of C/Y follows that S/Y ≡ 1−C/Y is constant. So gS = gY = gK ,
which in turn implies that S/K is constant. By (4.2),

S

K
=

∆K + δK

K
= gK + δ,

so that also gK is constant. This, together with constancy of Y/K and C/Y,
implies that also gY and gC are constant. �
Remark. It is part (i) of the proposition which requires the assumption S > 0 for
all t ≥ 0. If S = 0, we would have gK = −δ and C ≡ Y −S = Y, hence gC = gY for
all t ≥ 0. Then there would be balanced growth if the common value of gC and gY
had a constant growth rate. This growth rate, however, could easily differ from
that of K. Suppose Y = AKαL1−α, 0 < α < 1, gA = γ and gL = n, where γ and
n are constants. We would then have 1+gC = 1+gY = (1+γ)(1−δ)α(1+n)1−α,
which could easily be larger than 1 and thereby different from 1 + gK = 1− δ ≤ 1
so that (i) no longer holds.
It is part (ii) of the proposition which requires the assumption of a closed

economy. In an open economy we do not necessarily have I = S, hence constancy
of S/K no longer implies constancy of gK = I/K − δ. �
For many long-run closed-economymodels, including the Diamond OLGmodel,

it holds that if and only if the dynamic system implied by the model is in a steady
state, will the economy feature balanced growth, cf. Proposition 4 below. There
exist cases, however, where this equivalence between steady state and balanced
growth does not hold (some open economy models and some models with em-
bodied technological change). Hence, we shall maintain a distinction between the
two concepts.
Note that Proposition 1 pertains to any model for which (4.2) is valid. No

assumption about market form and economic agents’behavior are involved. And
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130 CHAPTER 4. A GROWING ECONOMY

except for the assumed constancy of the capital depreciation rate δ, no assumption
about the technology is involved, not even that constant returns to scale is present.
Proposition 1 suggests that if one accepts Kaldor’s stylized facts as a rough

description of more than a century’s growth experience and therefore wants the
model to be consistent with them, one should construct the model so that it can
generate balanced growth.

Balanced growth requires Harrod-neutrality

Our next proposition states that for a model to be capable of generating balanced
growth, technological progress must take the Harrod-neutral form (i.e., be labor-
augmenting). Also this proposition holds in a fairly general setting, but not as
general as that of Proposition 1. Constant returns to scale and a constant growth
rate in the labor force, two aspects about which Proposition 1 is silent, will now
have a role to play.7

Consider an aggregate production function

Yt = F̃ (Kt, ALt, t), A > 0,
∂F̃

∂t
> 0, (4.4)

where F̃ is homogeneous of degree one w.r.t. the first two arguments (CRS) and
A is a constant that depends on measurement units. The third argument, t,
represents technological progress: as time proceeds, unchanged inputs of capital
and labor result in more and more output. Let the labor force grow at a constant
rate n,

Lt = L0(1 + n)t, n > −1, (4.5)

where L0 > 0. The Japanese economist Hirofumi Uzawa (1928-) is famous for
several contributions, not least his balanced growth theorem (Uzawa 1961), which
we here state in a modernized form.

PROPOSITION 2 (Uzawa’s balanced growth theorem). Let {(Kt, Yt, Ct)}∞t=0 be a
path along which Yt, Kt, Ct, and St ≡ Yt − Ct are positive for all t = 0, 1, 2,. . . ,
and satisfy the dynamic resource constraint (4.2), given the production function
(4.4) and the labor force (4.5). Assume (1 + g)(1 + n) > 1− δ. Then:
(i) a necessary condition for this path to be a balanced growth path is that along
the path it holds that

Yt = F̃ (Kt, TtLt, 0), (4.6)

where Tt = A(1+g)t with 1+g ≡ (1+gY )/(1+n), gY being the constant growth
rate of output along the balanced growth path;

7On the other hand we do not imply that CRS is always necessary for a balanced growth
path (see Exercise 4.??).
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4.1. Harrod-neutrality and Kaldor’s stylized facts 131

(ii) for any g ≥ 0 such that there is a q > (1 + g)(1 + n) − (1 − δ) with the
property that the production function F̃ in (4.4) allows an output-capital ratio
equal to q at t = 0 (i.e., F̃ (1, k̃−1, 0) = q for some real number k̃ > 0), a suffi cient
condition for F̃ to be consistent with a balanced growth path with output-capital
ratio equal to q is that F̃ can be written as in (4.6) with Tt = A(1 + g)t.

Proof (i) Suppose the given path {(Kt, Yt, Ct)}∞t=0 is a balanced growth path.
By definition, gK and gY are then constant so that Kt = K0(1 + gK)t and Yt
= Y0(1 + gY )t. With t = 0 in (4.4) we then have

Yt(1 + gY )−t = Y0 = F̃ (K0, AL0, 0) = F̃ (Kt(1 + gK)−t, ALt(1 + n)−t, 0). (4.7)

In view of the assumption that St ≡ Yt−Ct > 0, we know from (i) of Proposition
1, that Y/K is constant so that gY = gK . By CRS, (4.7) then implies

Yt = F̃ (Kt, A(1 + gY )t(1 + n)−tLt, 0).

We see that (4.6) holds for Tt = A(1 + g)t with 1 + g ≡ (1 + gY )/(1 + n).
(ii) See Appendix B. �
The form (4.6) indicates that along a balanced growth path (BGP from

now), technological progress must be purely labor augmenting, that is, Harrod-
neutral. Moreover, by defining a new CRS production function F by F (Kt, TtLt)
≡ F̃ (Kt, TtLt, 0), we see that (i) of the proposition implies that at least along the
BGP, we can rewrite the original production function this way:

Yt = F̃ (Kt, ALt, t) = F̃ (Kt, TtLt, 0) ≡ F (Kt, TtLt). (4.8)

where T0 = A and Tt = T0(1 + g)t with 1 + g ≡ (1 + gY )/(1 + n).
As emphasized also in Chapter 2, presence of Harrod-neutrality says nothing

about what the source of technological progress is. Harrod-neutrality does not
mean that technological change emanates specifically from the labor input. It
only means that technical innovations predominantly are such that not only do
labor and capital in combination become more productive, but this happens to
manifest itself such that we can rewrite the aggregate production function as in
(4.8). (Often introductions to economic growth theory focus on the case where
the production function F is Cobb-Douglas. In this case − but only in this case
− Harrod-neutrality is equivalent to both Hicks-neutrality and Solow-neutrality.)
What is the intuition behind the Uzawa result that for balanced growth to be

possible, technological progress must at the aggregate level have the purely labor-
augmenting form? First, notice that there is an asymmetry between capital and
labor. Capital is an accumulated amount of non-consumed output. In contrast,
labor is a non-produced production factor which in the present context grows in
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132 CHAPTER 4. A GROWING ECONOMY

an exogenous way. Second, because of CRS, the original production function,
(4.4), implies that

1 = F̃ (
Kt

Yt
,
Lt
Yt
, t). (4.9)

Now, since capital is accumulated non-consumed output, it tends to inherit the
trend in output such that Kt/Yt must be constant along a BGP (this is what
Proposition 1 is about). Labor does not inherit the trend in output; indeed, the
ratio Lt/Yt is free to adjust as t proceeds. When there is technological progress
(∂F̃ /∂t > 0) along a BGP, this progress must manifest itself in the form of a
changing Lt/Yt in (4.9) as t proceeds, precisely because Kt/Yt must be constant
along the path. In the “normal”case where ∂F̃ /∂L > 0, the needed change in
L(t)/Y (t) is a fall (i.e., rise in Y (t)/L(t)). This is what (4.9) shows. Indeed, the
fall in Lt/Yt must exactly offset the effect on F̃ of the rising t, when there is a
fixed capital-output ratio. It follows that along the BGP, Yt/Lt is an increasing
implicit function of t. If we denote this function Tt, we end up with (4.8).
The generality of Uzawa’s theorem is noteworthy. Like Proposition 1, Uzawa’s

theorem is about technically feasible paths, while economic institutions, market
forms, and agents’behavior are not involved. The theorem presupposes CRS,
but does not need that the technology has neoclassical properties not to speak of
satisfying the Inada conditions. And the theorem holds for exogenous as well as
endogenous technological progress.
A simple implication of the theorem is the following. Let yt denote “labor

productivity”in the sense of Yt/Lt, kt denote the capital-labor ratio, Kt/Lt, and
ct the consumption-labor ratio, Ct/Lt. We have:

COROLLARY Along a BGP with positive gross saving and the technology level
T growing at a constant rate g ≥ 0, output grows at the rate (1 + g)(1 + n)− 1
(≈ g + n for g and n “small”) while labor productivity, y, capital-labor ratio, k,
and consumption-labor ratio, c, all grow at the rate g.

Proof That gY = (1 + g)(1 + n) − 1 follows from (i) of Proposition 2. As to gy
we have

yt ≡
Yt
Lt

=
Y0(1 + gY )t

L0(1 + n)t
= y0(1 + g)t,

showing that y grows at the rate g. Moreover, y/k = Y/K, which is constant
along a BGP, by (i) of Proposition 1. Hence k grows at the same rate as y.
Finally, also c/y ≡ C/Y is constant along a BGP, implying that also c grows at
the same rate as y. �
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Factor income shares

There is one facet of Kaldor’s stylized facts which we have not yet related to
Harrod-neutral technological progress, namely the claimed long-run “approxi-
mate”constancy of the income share of labor and the rate of return on capital.
It turns out that, if we assume (a) neoclassical technology, (b) profit maximiz-
ing firms, and (c) perfect competition in the output and factor markets, then
these constancies are inherent in the combination of constant returns to scale
and balanced growth.
To see this, let the aggregate production function be Yt = F (Kt, TtLt) where

F is neoclassical and has CRS. With wt denoting the real wage at time t, in
equilibrium under perfect competition the labor income share will be

wtLt
Yt

=
∂Yt
∂Lt

Lt

Yt
=
F2(Kt, TtLt)TtLt

Yt
. (4.10)

When the capital good is nothing but non-consumed output, the rate of return
on capital at time t can be written

rt =
Yt − wtLt − δKt

Kt

=
Yt − wtLt

Yt
· Yt
Kt

− δ. (4.11)

Since land as a production factor is ignored, gross capital income equals non-
labor income, Yt − wtLt. Denoting the gross capital income share by αt, we thus
have

αt =
Yt − wtLt

Yt
=
F (Kt, TtLt)− F2(Kt, TtLt)TtLt

Yt

=
F1(Kt, TtLt)Kt

Yt
=

∂Yt
∂Kt

Kt

Yt
= (rt + δ)

Kt

Yt
, (4.12)

where the third equality comes from Euler’s theorem8 and the last from (4.11.

PROPOSITION 3 (factor income shares) Suppose a given path {(Kt, Yt, Ct)}∞t=0

is a BGP with positive saving in this competitive economy. Then αt = α, a
constant ∈ (0, 1). The labor income share will be 1−α and the rate of return on
capital αq − δ, where q is the constant output-capital ratio along the BGP.
Proof We have Yt = F (Kt, TtLt) = TtLtF (k̃t, 1) ≡ TtLtf(k̃t). From Proposition
1 follows that along the given BGP, Yt/Kt is some constant, q. Since Yt/Kt =
f(k̃t)/k̃t and f ′′ < 0, this implies k̃t constant, say equal to k̃∗. Along the BGP,
∂Yt/∂Kt (= f ′(k̃t)) thus equals the constant f ′(k̃∗). From (4.12) then follows

8Indeed, from Euler’s theorem follows that F1K+F2TL= F (K,TL), when F is homogeneous
of degree one.
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134 CHAPTER 4. A GROWING ECONOMY

that αt = f ′(k̃∗)/q ≡ α. Moreover, 0 < α < 1, since 0 < α is implied by f ′ > 0,
and α < 1 is implied by the fact that q = Y/K = f(k̃∗)/k̃∗ > f ′(k̃∗), in view of
f ′′ < 0 and f(0) ≥ 0. So, by the first equality in (4.12), the labor income share
can be written wtLt/Yt = 1 − αt = 1 − α. Consequently, by (4.11), the rate of
return on capital is rt = (1− wtLt/Yt)Yt/Kt − δ = αq − δ. �
Although this proposition implies constancy of the factor income shares under

balanced growth, it does not determine them. The proposition expresses the
factor income shares in terms of the unknown constants α and q. These constants
will generally depend on the effective capital-labor ratio in steady state, k̃∗, which
will generally be an unknown as long as we have not formulated a theory of saving.
This takes us back to Diamond’s OLG model which provides such a theory.

4.2 The Diamond OLGmodel with Harrod-neutral
technological progress

Recall from the previous chapter that in the Diamond OLG model people live in
two periods, as young and as old. Only the young work and each young supplies
one unit of labor inelastically. The period utility function, u(c), satisfies the
No Fast Assumption. The saving function of the young is st = s(wt, rt+1). We
now include Harrod-neutral technological progress in the aggregate production
function of the Diamond model:

Yt = F (Kt, TtLt), (4.13)

where F is neoclassical with CRS and Tt represents the level of technology in
period t. We assume that Tt grows at a constant exogenous rate, that is,

Tt = T0(1 + g)t, g ≥ 0. (4.14)

The initial level of technology, T0, is historically given. Employment equals Lt
which is the number of young, growing at the constant exogenous rate n > −1.
Suppressing for a while the explicit dating of the variables, in view of CRS

w.r.t. K and TL, we have

ỹ ≡ Y

TL
= F (

K

TL
, 1) = F (k̃, 1) ≡ f(k̃), f ′ > 0, f ′′ < 0,

where TL is labor input in effi ciency units and k̃ ≡ K/(TL) is known as the
effective or technology-corrected capital-labor ratio - also sometimes called the
effective capital intensity. There is perfect competition in all markets. In each
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period the representative firm maximizes profit, Π = F (K,TL)− r̂K−wL.With
respect to capital this leads to the first-order condition

∂Y

∂K
=
∂
[
TLf(k̃)

]
∂K

= f ′(k̃) = r + δ, (4.15)

where δ is a constant capital depreciation rate, 0 ≤ δ ≤ 1. With respect to labor
we get the first-order condition

∂Y

∂L
=
∂
[
TLf(k̃)

]
∂L

=
[
f(k̃)− f ′(k̃)k̃

]
T = w. (4.16)

In view of f ′′ < 0, a k̃ satisfying (4.15) is unique. Let us denote its value in
period t, k̃dt . Assuming equilibrium in the factor markets, this desired effective
capital-labor ratio equals the effective capital-labor ratio from the supply side,
k̃t ≡ Kt/(TtLt) ≡ kt/Tt, which is predetermined in every period. The equilibrium
interest rate and real wage in period t are thus given by

rt = f ′(k̃t)− δ ≡ r(k̃t), where r′(k̃t) = f ′′(k̃t) < 0, (4.17)

wt =
[
f(k̃t)− f ′(k̃t)k̃

]
Tt ≡ w̃(k̃t)Tt, where w̃′(k̃t) = −k̃tf ′′(k̃t) > 0. (4.18)

Here, w̃(k̃t) = wt/Tt is known as the technology-corrected real wage.

The equilibrium path

The aggregate capital stock at the beginning of period t+1must still be owned by
the old generation in that period and thus equal the aggregate saving these people
did as young in the previous period. Hence, as before,Kt+1 = stLt = s(wt, rt+1)Lt.
In view of Kt+1 ≡ k̃t+1Tt+1Lt+1 = k̃t+1Tt(1 + g)Lt(1 + n), together with (4.17)
and (4.18), we get

k̃t+1 =
s(w̃(k̃t)Tt, r(k̃t+1))

Tt(1 + g)(1 + n)
. (4.19)

This is the general version of the law of motion of the Diamond OLG model with
Harrod-neutral technological progress.
For the model to comply with Kaldor’s “stylized facts”, the model should be

capable of generating balanced growth. Essentially, this capability is equivalent
to being able to generate a steady state. In the presence of technological progress
this latter capability requires a restriction on the lifetime utility function, U. In-
deed, we see from (4.19) that the model is consistent with existence of a steady
state only if the time-dependent technology level, Tt, in the numerator and de-
nominator cancels out. This requires that the saving function is homogeneous of
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degree one in its first argument such that s(w̃(k̃t)Tt, r(k̃t+1)) = s(w̃(k̃t), r(k̃t+1))Tt.
In turn this is so if and only if the lifetime utility function of the young is ho-
mothetic. So, in addition to the No Fast Assumption from Chapter 3, we impose
the Homotheticity Assumption:

the lifetime utility function U is homothetic. (A4)

This property entails that if the value of the “endowment”, here the human wealth
wt, is multiplied by a λ > 0, then the chosen c1t and c2t+1 are also multiplied by
this factor λ (see Appendix C); it then follows that st is multiplied by λ as well.
Letting λ = 1/(w̃(k̃t)Tt), (A4) thus allows us to write

st = s(1, r(k̃t+1))w̃(k̃t)Tt ≡ ŝ(r(k̃t+1))w̃(k̃t)Tt, (4.20)

where ŝ(r(k̃t+1)) is the saving-wealth ratio of the young. The distinctive feature
is that this saving-wealth ratio is independent of wealth (but in general it depends
on the interest rate). By (4.19), the law of motion of the economy reduces to

k̃t+1 =
ŝ(r(k̃t+1))

(1 + g)(1 + n)
w̃(k̃t). (4.21)

The equilibrium path of the economy can be analyzed in a similar way as in
the case of no technological progress. In the assumptions (A2) and (A3) from
Chapter 3 we replace k by k̃ and 1 + n by (1 + g)(1 + n). As a generalization
of Proposition 4 from Chapter 3, these generalized versions of (A2) and (A3),
together with the No Fast Assumption (A1) and the Homotheticity Assumption
(A4), guarantee that there exists at least one locally asymptotically stable steady
state k̃∗ > 0. That is, given these assumptions, we have k̃t → k̃∗ for t→∞ and so
the system will sooner or later settle down in a steady state. The convergence of
k̃ implies convergence of many key variables, for instance the equilibrium factor
prices given in (4.17) and (4.18). We see that, for t→∞,

rt = f ′(k̃t)− δ → f ′(k̃∗)− δ ≡ r∗, and

wt =
[
f(k̃t)− k̃tf ′(k̃t)

]
Tt → [f(k∗)− k∗f ′(k∗)]Tt ≡ w̃∗Tt = w̃∗T0(1 + g)t.

The prediction of the model is now that the economy will in the long run
behave in accordance with Kaldor’s stylized facts. Indeed, in many models, in-
cluding the present one, convergence toward a steady state is equivalent to saying
that the time path of the economy converges toward a BGP. In the present case,
with perfect competition, the implication is that in the long run the economy will
be consistent with Kaldor’s stylized facts.
The claimed equivalence follows from:
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PROPOSITION 4 Consider a Diamond economy with Harrod-neutral techno-
logical progress at the constant rate g ≥ 0 and positive gross saving for all t.
Then:
(i) if the economy features balanced growth, then it is in a steady state;
(ii) if the economy is in a steady state, then it features balanced growth.

Proof (i) Suppose the considered economy features balanced growth. Then, by
Proposition 1, Y/K is constant. As Y/K = ỹ/k̃ = f(k̃)/k̃, also k̃ is constant.
Thereby the economy is in a steady state. (ii) Suppose the considered economy
is in a steady state, i.e., given (4.21), k̃t = k̃t+1 = k̃∗ for some k̃∗ > 0. The
constancy of k̃ ≡ K/(TL) and ỹ ≡ Y/(TL) = f(k̃) implies that both gK and gY
equal gTL = (1+g)(1+n)−1 > 0. As K and Y thus grow at the same rate, Y/K
is constant. With S ≡ Y − C, constancy of S/K = (∆K + δK)/K = gK + δ,
implies constancy of S/K so that S also grows at the rate gK and thereby at the
same rate as output. Hence S/Y is constant. Because C/Y ≡ 1 − S/Y, also C
grows at the constant rate gY . All criteria for a balanced growth path are thus
satisfied. �

Figure 4.4: Transition curve for a well-behaved Diamond OLG model with Harrod-
neutral technical progress.

Let us portray the dynamics by a transition diagram. Fig. 4.4 shows a “well-
behaved”case in the sense that there is only one steady state. In the figure the
initial effective capital-labor ratio, k̃0, is assumed to be relatively large. This
need not be interpreted as if the economy is highly developed and has a high
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initial capital-labor ratio, K0/L0. Indeed, the reason that k̃0 ≡ K0/(T0L0) is
large relative to its steady-steady value may be that the economy is “backward”
in the sense of having a relatively low initial level of technology. Growing at a
given rate g, the technology will in this situation grow faster than the capital-
labor ratio, K/L, so that the effective capital-labor ratio declines over time. The
process continues until the steady state is essentially reached with a real interest
rate r∗ = f ′(k̃∗)− δ. This is to remind the reader that from an empirical point of
view, the adjustment towards a steady state can be from above as well as from
below.
The output growth rate in steady state, (1+g)(1+n)−1, is sometimes called

the “natural rate of growth”. Since (1 + g)(1 + n)− 1 = g + n+ gn ≈ g + n for
g and n “small”, the natural rate of growth approximately equals the sum of the
rate of technological progress and the growth rate of the labor force. Warning:
When measured on an annual basis, the growth rates of technology and labor
force, ḡ and n̄, do indeed tend to be “small”, say ḡ = 0.02 and n̄ = 0.005, so
that ḡ + n̄ + ḡn̄ = 0.0251 ≈ 0.0250 = ḡ + n̄. But in the context of models like
Diamond’s, the period length is, say, 30 years. Then the corresponding g and n
will satisfy the equations 1+g = (1+ ḡ)30 = 1.0230 = 1.8114 and 1+n = (1+ n̄)30

= 1.00530 = 1.1614, respectively. We get g + n = 0.973, which is about 10 per
cent smaller than the true output growth rate over 30 years, which is g + n+ gn
= 1.104.
We end our account of Diamond’s OLGmodel with some remarks on a popular

special case of a homothetic utility function.

An example: CRRA period utility

An example of a homothetic lifetime utility function is obtained by letting the
period utility function take the CRRA form introduced in the previous chapter.
Then

U(c1, c2) =
c1−θ

1 − 1

1− θ + (1 + ρ)−1 c
1−θ
2 − 1

1− θ , θ > 0. (4.22)

Recall that the CRRA utility function with parameter θ has the property that
the (absolute) elasticity of marginal utility of consumption equals the constant
θ > 0 for all c > 0. Up to a positive linear transformation it is, in fact, the only
period utility function with this property. A proof that the utility function (4.22)
is indeed homothetic is given in Appendix C.
One of the reasons that the CRRA function is popular in macroeconomics is

that in representative agent models, the period utility function must have this
form to obtain consistency with balanced growth and Kaldor’s stylized facts (this
is shown in Chapter 7). In contrast, a model with heterogeneous agents, like the
Diamond model, does not need CRRA utility to comply with the Kaldor facts.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



4.3. The golden rule under Harrod-neutral technological progress 139

CRRA utility is just a convenient special case leading to homothetic lifetime
utility. And this is what is needed for a BGP to exist and thereby for compatibility
with Kaldor’s stylized facts.
Given the CRRA assumption in (4.22), the saving-wealth ratio of the young

becomes

ŝ(r) =
1

1 + (1 + ρ)
(

1+r
1+ρ

)(θ−1)/θ
. (4.23)

It follows that ŝ′(r) R 0 for θ Q 1.

When θ = 1 (the case u(c) = ln c), ŝ(r) = 1/(2 + ρ) ≡ ŝ, a constant, and the
law of motion (4.21) thus simplifies to

k̃t+1 =
1

(1 + g)(1 + n)(2 + ρ)
w̃(k̃t).

We see that in the θ = 1 case, whatever the production function, k̃t+1 enters
only at the left-hand side of the fundamental difference equation, which thereby
reduces to a simple transition function. Since w̃′(k̃) > 0, the transition curve
is positively sloped everywhere. If the production function is Cobb-Douglas, Yt
= Kα

t (TtLt)
1−α, then w̃(k̃t) = (1 − α)k̃αt . Combining this with θ = 1 yields a

“well-behaved”Diamond model (thus having a unique and globally asymptoti-
cally stable steady state), cf. Fig. 4.4 above. In fact, as noted in Chapter 3,
in combination with Cobb-Douglas technology, CRRA utility results in “well-
behavedness”whatever the value of θ > 0.

4.3 The golden rule under Harrod-neutral tech-
nological progress

Given that there is technological progress, consumption per unit of labor is likely
to grow over time. Therefore the definition of the golden-rule capital-labor ratio
from Chapter 3 has to be extended to cover the case of growing consumption per
unit of labor. To allow existence of steady states and balanced growth paths, we
maintain the assumption that technological progress is Harrod-neutral, that is,
we maintain (4.13) where the technology level, T, grows at a constant rate g > 0.

DEFINITION 2 The golden-rule capital intensity, k̃GR, is that level of k̃ ≡
K/(TL) which gives the highest sustainable path for consumption per unit of
labor in the economy.

As before, we let time be discrete but allow the period length to be arbitrary,
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possibly one year for instance. Consumption per unit of labor is

ct ≡
Ct
Lt

=
F (Kt, TtLt)− St

Lt
=
f(k̃t)TtLt − (Kt+1 −Kt + δKt)

Lt

= f(k̃t)Tt − (1 + g)Tt(1 + n)k̃t+1 + (1− δ)Ttk̃t
=

[
f(k̃t) + (1− δ)k̃t − (1 + g)(1 + n)k̃t+1

]
Tt.

In a steady state we have k̃t+1 = k̃t = k̃ and therefore

ct =
[
f(k̃) + (1− δ)k̃ − (1 + g)(1 + n)k̃

]
Tt ≡ c̃(k̃)Tt,

where c̃(k̃) is the “technology-corrected” level of consumption per unit of labor
in steady state. We see that in steady state, consumption per unit of labor will
grow at the same rate as the technology. Thus, ln ct = ln c̃(k̃) + lnT0 + t ln(1 +g).
Fig. 4.5 illustrates.
Since the evolution of technology, parameterized by T0 and g, is exogenous, the

highest possible path of ct is found by maximizing c̃(k̃). This gives the first-order
condition

c̃′(k̃) = f́ ′(k̃) + (1− δ)− (1 + g)(1 + n) = 0. (4.24)

Assuming, for example, n ≥ 0, we have (1 + g)(1 + n)− (1− δ) > 0 since g > 0.
Then, by continuity the equation (4.24) necessarily has a unique solution in k̃ > 0,
if the production function satisfies the condition

lim
k̃→0

f ′(k̃) > (1 + g)(1 + n)− (1− δ) > lim
k̃→∞

f ′(k̃),

which is a milder condition than the Inada conditions. Considering the second-
order condition c̃′′(k̃) = f ′′(k̃) < 0, the k̃ satisfying (4.24) does indeed maximize
c̃(k̃). By definition, this k̃ is the golden-rule capital intensity, k̃GR. Thus

f́ ′(k̃GR)− δ = (1 + g)(1 + n)− 1 ≈ g + n, (4.25)

where the right-hand side is the “natural rate of growth”. This says that the
golden-rule capital intensity is that level of the capital intensity at which the net
marginal productivity of capital equals the output growth rate in steady state.

Is dynamic ineffi ciency a problem in practice? As in the Diamond model
without technological progress, it is theoretically possible that the economy ends
up in a steady state with k̃∗ > k̃GR.

9 If this happens, the economy is dynamically

9The proof is analogue to that in Chapter 3 for the case g = 0.
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Figure 4.5: The highest sustainable path of consumption is where k̃∗ = k̃GR.

ineffi cient and r∗ < (1 + g)(1 + n) − 1 ≈ g + n. To check whether dynamic
ineffi ciency is a realistic outcome in an industrialized economy or not, we should
compare the observed average GDP growth rate over a long stretch of time to the
average real interest rate or rate of return in the economy. For the period after the
Second World War the average GDP growth rate (≈ g+ n) in Western countries
is typically about 3 per cent per year. But what interest rate should one choose?
In simple macro models, like the Diamond model, there is no uncertainty and no
need for money to carry out trades. In such models all assets earn the same rate
of return, r, in equilibrium. In the real world there is a spectrum of interest rates,
reflecting the different risk and liquidity properties of the different assets. The
expected real rate of return on a short-term government bond is typically less
than 3 per cent per year (a relatively safe and liquid asset). This is much lower
than the expected real rate of return on corporate stock, 7-9 per cent per year.
Our model cannot tell which rate of return we should choose, but the conclusion
hinges on that choice.

Abel et al. (1989) study the problem on the basis of a model with uncertainty.
They show that a suffi cient condition for dynamic effi ciency is that gross invest-
ment, I, does not exceed the gross capital income in the long run, that is I ≤
Y −wL. They find that for the U.S. and six other major OECD nations this seems
to hold. Indeed, for the period 1929-85 the U.S. has, on average, I/Y = 0.15 and
(Y − wL)/Y = 0.29. A similar difference is found for other industrialized coun-
tries, suggesting that they are dynamically effi cient. At least in these countries,
therefore, the potential coordination failure laid bare by OLG models does not
seem to have been operative in practice.
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4.4 The functional distribution of income

.....Text to be inserted

The neoclassical theory of factor income shares

.....Text to be inserted

How the labor income share depends on the capital-labor ratio

To begin with we ignore technological progress and write aggregate output as
Y = F (K,L), where F is neoclassical with CRS. From Euler’s theorem follows
that F (K,L) = F1K + F2L = f ′(k)K + (f(k) − kf ′(k))L, where k ≡ K/L. In
equilibrium under perfect competition we have

Y = r̂K + wL,

where r̂ = r + δ = f ′(k) ≡ r̂(k) is the cost per unit of capital input and w
= f(k) − kf ′(k) ≡ w(k) is the real wage, i.e., the cost per unit of labor input.
The labor income share is

wL

Y
=
f(k)− kf ′(k)

f(k)
≡ w(k)

f(k)
≡ SL(k) =

wL

r̂K + wL
=

w/r̂
k

1 + w/r̂
k

, (4.26)

where the function SL(·) is the income share of labor function, w/r̂ is the factor
price ratio, and (w/r̂)/k = w/(r̂k) is the factor income ratio. As r̂′(k) = f ′′(k) < 0
and w′(k) = −kf ′′(k) > 0, the factor price ratio, w/r̂, is an increasing function
of k.
Suppose that capital tends to grow faster than labor so that k rises over time.

Unless the production function is Cobb-Douglas, this will under perfect competi-
tion affect the labor income share. But apriori it is not obvious in what direction.
By (4.26) we see that the labor income share moves in the same direction as the
factor income ratio, (w/r̂)/k. The latter goes up (down) depending on whether
the percentage rise in the factor price ratio w/r̂ is greater (smaller) than the
percentage rise in k. So, if we let E`xg(x) denote the elasticity of a function g(x)
w.r.t. x, we can only say that

SL′(k) R 0 for E`k
w

r̂
R 1, (4.27)

respectively. In words: if the production function is such that the ratio of the
marginal productivities of the two production factors is strongly (weakly) sensitive
to the capital-labor ratio, then the labor income share rises (falls) along with a
rise in K/L.
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Usually, however, the inverse elasticity is considered, namely E`w/r̂k (= 1/E`k wr̂ ).
This elasticity indicates how sensitive the cost minimizing capital-labor ratio, k,
is to a given factor price ratio w/r̂. Under perfect competition E`w/r̂k coincides
with what is known as the elasticity of factor substitution (for a general defin-
ition, see below). The latter is often denoted σ. In the CRS case, σ will be a
function of only k so that we can write E`w/r̂k = σ(k). By (4.27), we therefore
have

SL′(k) R 0 for σ(k) Q 1,

respectively.
If F is Cobb-Douglas, i.e., Y = KαL1−α, 0 < α < 1, we have σ(k) ≡ 1, as

shown in Section 4.5. In this case variation in k does not change the labor income
share under perfect competition. Empirically there is not agreement about the
“normal”size of the elasticity of factor substitution for industrialized economies,
but the bulk of studies seems to conclude with σ(k) < 1 (see below).

Adding Harrod-neutral technical progress We now add Harrod-neutral
technical progress. We write aggregate output as Y = F (K,TL), where F is
neoclassical with CRS, and T = Tt = T0(1 + g)t. Then the labor income share is

wL

Y
=

w/T

Y/(TL)
≡ w̃

ỹ
.

The above formulas still hold if we replace k by k̃ ≡ K/(TL) and w by w̃ ≡ w/T.
We get

SL′(k̃) R 0 for σ(k̃) Q 1,

respectively. We see that if σ(k̃) < 1 in the relevant range for k̃, then market
forces tend to increase the income share of the factor that is becoming relatively
more scarce, which is effi ciency-adjusted labor, TL, if k̃ is increasing. And if
instead σ(k̃) > 1 in the relevant range for k̃, then market forces tend to decrease
the income share of the factor that is becoming relatively more scarce.
While k empirically is clearly growing, k̃ ≡ k/T is not necessarily so because

also T is increasing. Indeed, according to Kaldor’s “stylized facts”, apart from
short- and medium-term fluctuations, k̃ − and therefore also r̂ and the labor
income share − tend to be more or less constant over time. This can happen
whatever the sign of σ(k̃∗) − 1, where k̃∗ is the long-run value of the effective
capital-labor ratio k̃. Given CRS and the production function f, the elasticity
of substitution between capital and labor does not depend on whether g = 0 or
g > 0, but only on the function f itself and the level of K/(TL).
As alluded to earlier, there are empiricists who reject Kaldor’s “facts” as a

general tendency. For instance Piketty (2014) essentially claims that in the very
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long run the effective capital-labor ratio k̃ has an upward trend, temporarily
braked by two world wars and the Great Depression in the 1930s. If so, the sign
of σ(k̃) − 1 becomes decisive for in what direction wL/Y will move. Piketty
interprets the econometric literature as favoring σ(k̃) > 1, which means there
should be downward pressure on wL/Y . This particular source behind a falling
wL/Y can be questioned, however. Indeed, σ(k̃) > 1 contradicts the more general
empirical view referred to above.10

Immigration

Here is another example that illustrates the importance of the size of σ(k̃). Con-
sider an economy with perfect competition and a given aggregate capital stock K
and technology level T (entering the production function in the labor-augmenting
way as above). Suppose that for some reason, immigration, say, aggregate labor
supply, L, shifts up and full employment is maintained by the needed real wage
adjustment. Given the present model, in what direction will aggregate labor in-
come wL = w̃(k̃)TL then change? The effect of the larger L is to some extent
offset by a lower w brought about by the lower effective capital-labor ratio. In-
deed, in view of dw̃/dk̃ = −k̃f ′′(k̃) > 0, we have k̃ ↓ implies w ↓ for fixed T. So
we cannot apriori sign the change in wL. The following relationship can be shown
(Exercise 4.??), however:

∂(wL)

∂L
= (1− α(k̃)

σ(k̃)
)w R 0 for α(k̃) Q σ(k̃), (4.28)

respectively, where a(k̃) ≡ k̃f ′(k̃)/f(k̃) is the output elasticity w.r.t. capital
which under perfect competition equals the gross capital income share. It follows
that the larger L will not be fully offset by the lower w as long as the elasticity
of factor substitution, σ(k̃), exceeds the gross capital income share, α(k̃). This
condition seems confirmed by most of the empirical evidence (see Section 4.5).

The elasticity of factor substitution*

We shall here discuss the concept of elasticity of factor substitution at a more
general level. Fig. 4.6 depicts an isoquant, F (K,L) = Ȳ , for a given neoclassical
production function, F (K,L), which need not have CRS. Let MRS denote the
marginal rate of substitution of K for L, i.e., MRS = FL(K,L)/FK(K,L).11 At

10According to Summers (2014), Piketty’s interpretation relies on conflating gross and net
returns to capital.
11When there is no risk of confusion as to what is up and what is down, we use MRS as a

shorthand for the more precise expression MRSKL.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



4.4. The functional distribution of income 145

a given point (K,L) on the isoquant curve, MRS is given by the absolute value
of the slope of the tangent to the isoquant at that point. This tangent coincides
with that isocost line which, given the factor prices, has minimal intercept with
the vertical axis while at the same time touching the isoquant. In view of F (·)
being neoclassical, the isoquants are by definition strictly convex to the origin.
Consequently, MRS is rising along the curve when L decreases and thereby K
increases. Conversely, we can let MRS be the independent variable and consider
the corresponding point on the indifference curve, and thereby the ratioK/L, as a
function ofMRS. If we letMRS rise along the given isoquant, the corresponding
value of the ratio K/L will also rise.

Figure 4.6: Substitution of capital for labor as the marginal rate of substitution in-
creases from MRS to MRS′.

The elasticity of substitution between capital and labor is defined as the elas-
ticity of the ratioK/L with respect toMRS when we move along a given isoquant,
evaluated at the point (K,L). Let this elasticity be denoted σ̃(K,L). Thus,

σ̃(K,L) =
MRS

K/L

d(K/L)

dMRS |Y=Ȳ
=

d(K/L)
K/L

dMRS
MRS |Y=Ȳ

. (4.29)

Although the elasticity of factor substitution is a characteristic of the tech-
nology as such and is here defined without reference to markets and factor prices,
it helps the intuition to refer to factor prices. At a cost-minimizing point, MRS
equals the factor price ratio w/r̂. Thus, the elasticity of factor substitution will
under cost minimization coincide with the percentage increase in the ratio of the
cost-minimizing factor ratio induced by a one percentage increase in the inverse

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



146 CHAPTER 4. A GROWING ECONOMY

factor price ratio, holding the output level unchanged.12 The elasticity of factor
substitution is thus a positive number and reflects how sensitive the capital-labor
ratio K/L is under cost minimization to an increase in the factor price ratio w/r̂
for a given output level. The less curvature the isoquant has, the greater is the
elasticity of factor substitution. In an analogue way, in consumer theory one con-
siders the elasticity of substitution between two consumption goods or between
consumption today and consumption tomorrow, cf. Chapter 3. In that context
the role of the given isoquant is taken over by an indifference curve. That is also
the case when we consider the intertemporal elasticity of substitution in labor
supply, cf. the next chapter.
Calculating the elasticity of substitution betweenK and L at the point (K,L),

we get

σ̃(K,L) = − FKFL(FKK + FLL)

KL [(FL)2FKK − 2FKFLFKL + (FK)2FLL]
, (4.30)

where all the derivatives are evaluated at the point (K,L). When F (K,L) has
CRS, the formula (4.30) simplifies to

σ̃(K,L) =
FK(K,L)FL(K,L)

FKL(K,L)F (K,L)
= −f

′(k) (f(k)− f ′(k)k)

f ′′(k)kf(k)
≡ σ(k), (4.31)

where k ≡ K/L.13 We see that under CRS, the elasticity of substitution depends
only on the capital-labor ratio k, not on the output level. We will now consider the
case where the elasticity of substitution is independent also of the capital-labor
ratio.

4.5 The CES production function*

It can be shown14 that if a neoclassical production function with CRS has a
constant elasticity of factor substitution different from one, it must be of the
form

Y = A
[
αKβ + (1− α)Lβ

] 1
β , (4.32)

where A, α, and β are parameters satisfying A > 0, 0 < α < 1, and β < 1,
β 6= 0. This function has been used intensively in empirical studies and is called
a CES production function (CES for Constant Elasticity of Substitution). For a
given choice of measurement units, the parameter A reflects effi ciency (or what

12This characterization is equivalent to interpreting the elasticity of substitution as the per-
centage decrease in the factor ratio (when moving along a given isoquant) induced by a one-
percentage increase in the corresponding factor price ratio.
13The formulas (4.30) and (4.31) are derived in Appendix D.
14See, e.g., Arrow et al. (1961).
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is known as total factor productivity) and is thus called the effi ciency parameter.
The parameters α and β are called the distribution parameter and the substitution
parameter, respectively. The restriction β < 1 ensures that the isoquants are
strictly convex to the origin. Note that if β < 0, the right-hand side of (4.32)
is not defined when either K or L (or both) equal 0. We can circumvent this
problem by extending the domain of the CES function and assign the function
value 0 to these points when β < 0. Continuity is maintained in the extended
domain (see Appendix E).
By taking partial derivatives in (4.32) and substituting back we get

∂Y

∂K
= αAβ

(
Y

K

)1−β

and
∂Y

∂L
= (1− α)Aβ

(
Y

L

)1−β

, (4.33)

where Y/K = A
[
α + (1− α)k−β

] 1
β and Y/L = A

[
αkβ + 1− α

] 1
β . The marginal

rate of substitution of K for L therefore is

MRS =
∂Y/∂L

∂Y/∂K
=

1− α
α

k1−β > 0.

Consequently,
dMRS

dk
=

1− α
α

(1− β)k−β,

where the inverse of the right-hand side is the value of dk/dMRS. Substituting
these expressions into (4.29) gives

σ̃(K,L) =
1

1− β ≡ σ, (4.34)

confirming the constancy of the elasticity of substitution. Since β < 1, σ > 0
always. A higher substitution parameter, β, results in a higher elasticity of factor
substitution, σ. And σ ≶ 1 for β ≶ 0, respectively.
Since β = 0 is not allowed in (4.32), at first sight we cannot get σ = 1 from

this formula. Yet, σ = 1 can be introduced as the limiting case of (4.32) when
β → 0, which turns out to be the Cobb-Douglas function. Indeed, one can show15

that, for fixed K and L,

A
[
αKβ + (1− α)Lβ

] 1
β → AKαL1−α, for β → 0.

By a similar procedure as above we find that a Cobb-Douglas function always
has elasticity of substitution equal to 1; this is exactly the value taken by σ in

15Proofs of this and the further claims below are in Appendix E.
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(4.34) when β = 0. In addition, the Cobb-Douglas function is the only production
function that has unit elasticity of substitution whatever the capital-labor ratio.
Another interesting limiting case of the CES function appears when, for fixed

K and L, we let β → −∞ so that σ → 0. We get

A
[
αKβ + (1− α)Lβ

] 1
β → Amin(K,L), for β → −∞. (4.35)

So in this case the CES function approaches a Leontief production function, the
isoquants of which form a right angle, cf. Fig. 4.7. In the limit there is no
possibility of substitution between capital and labor. In accordance with this the
elasticity of substitution calculated from (4.34) approaches zero when β goes to
−∞.
Finally, let us consider the “opposite”transition. For fixed K and L we let

the substitution parameter rise towards 1 and get

A
[
αKβ + (1− α)Lβ

] 1
β → A [αK + (1− α)L] , for β → 1.

Here the elasticity of substitution calculated from (4.34) tends to ∞ and the
isoquants tend to straight lines with slope−(1−α)/α. In the limit, the production
function thus becomes linear and capital and labor become perfect substitutes.
Fig. 4.7 depicts isoquants for alternative CES production functions and their

limiting cases. In the Cobb-Douglas case, σ = 1, the horizontal and vertical
asymptotes of the isoquant coincide with the coordinate axes. When σ < 1, the
horizontal and vertical asymptotes of the isoquant belong to the interior of the
positive quadrant. This implies that both capital and labor are essential inputs.
When σ > 1, the isoquant terminates in points on the coordinate axes. Then
neither capital, nor labor are essential inputs. Empirically there is not complete
agreement about the “normal” size of the elasticity of factor substitution for
industrialized economies. The elasticity also differs across the production sectors.
A thorough econometric study (Antràs, 2004) of U.S. data indicate the aggregate
elasticity of substitution to be in the interval (0.5, 1.0). The survey by Chirinko
(2008) concludes with the interval (0.4, 0.6). Starting from micro data, a recent
study by Oberfield and Raval (2014) finds that the elasticity of factor substitution
for the US manufacturing sector as a whole has been stable since 1970 at about
0.7.

The CES production function in intensive form

Dividing through by L on both sides of (4.32), we obtain the CES production
function in intensive form,

y ≡ Y

L
= A(αkβ + 1− α)

1
β , (4.36)
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Figure 4.7: Isoquants for the CES function for alternative values of σ (A = 1.5, Ȳ = 2,
and α = 0.42).

where k ≡ K/L. The marginal productivity of capital can be written

MPK =
dy

dk
= αA

[
α + (1− α)k−β

] 1−β
β = αAβ

(y
k

)1−β
,

which of course equals ∂Y/∂K in (4.33). We see that the CES function violates
either the lower or the upper Inada condition for MPK, depending on the sign
of β. Indeed, when β < 0 (i.e., σ < 1), then for k → 0 both y/k and dy/dk
approach an upper bound equal to Aα1/β < ∞, thus violating the lower Inada
condition forMPK (see the right-hand panel of Fig. 2.3 of Chapter 2). It is also
noteworthy that in this case, for k →∞, y approaches an upper bound equal to
A(1− α)1/β <∞. These features reflect the low degree of substitutability when
β < 0.
When instead β > 0, there is a high degree of substitutability (σ > 1). Then,

for k → ∞ both y/k and dy/dk → Aα1/β > 0, thus violating the upper Inada
condition for MPK (see right panel of Fig. 4.8). It is also noteworthy that for
k → 0, y approaches a positive lower bound equal to A(1 − α)1/β > 0. Thus, in
this case capital is not essential. At the same time dy/dk →∞ for k → 0 (so the
lower Inada condition for the marginal productivity of capital holds). Details are
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in Appendix E.
The marginal productivity of labor is

MPL =
∂Y

∂L
= (1− α)Aβy1−β = (1− α)A(αkβ + 1− α)(1−β)/β ≡ w(k),

from (4.33).
Since (4.32) is symmetric in K and L, we get a series of symmetric results by

considering output per unit of capital as x ≡ Y/K = A
[
α + (1− α)(L/K)β

]1/β
.

In total, therefore, when there is low substitutability (β < 0), for fixed input
of either of the production factors, there is an upper bound for how much an
unlimited input of the other production factor can increase output. And when
there is high substitutability (β > 0), there is no such bound and an unlimited
input of either production factor take output to infinity.
The Cobb-Douglas case, i.e., the limiting case for β → 0, constitutes in several

respects an intermediate case in that all four Inada conditions are satisfied and
we have y → 0 for k → 0, and y →∞ for k →∞.

0 5 10
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1
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∆x ·Aα
1
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a) The case of σ < 1.

k

y
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a) The case of σ > 1.
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Figure 4.8: The CES production function in intensive form, σ = 1/(1− β), β < 1.

Generalizations

The CES production function considered above has CRS. By adding an elasticity
of scale parameter, γ, we get the generalized form

Y = A
[
αKβ + (1− α)Lβ

] γ
β , γ > 0. (4.37)

In this form the CES function is homogeneous of degree γ. For 0 < γ < 1, there are
DRS, for γ = 1 CRS, and for γ > 1 IRS. If γ 6= 1, it may be convenient to consider
Q ≡ Y 1/γ = A1/γ

[
αKβ + (1− α)Lβ

]1/β
and q ≡ Q/L = A1/γ(αkβ + 1− α)1/β.
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The elasticity of substitution between K and L is σ = 1/(1−β) whatever the
value of γ. So including the limiting cases as well as non-constant returns to scale
in the “family”of production functions with constant elasticity of substitution,
we have the simple classification displayed in Table 4.1.

Table 4.1 The family of production functions
with constant elasticity of substitution.

σ = 0 0 < σ < 1 σ = 1 σ > 1
Leontief CES Cobb-Douglas CES

Note that only for γ ≤ 1 is (4.37) a neoclassical production function. This
is because, when γ > 1, the conditions FKK < 0 and FNN < 0 do not hold
everywhere.
We may generalize further by assuming there are n inputs, in the amounts

X1, X2, ..., Xn. Then the CES production function takes the form

Y = A
[
α1X1

β + α2X2
β + ...αnXn

β
] γ
β , αi > 0 for all i,

∑
i

αi = 1, γ > 0.

(4.38)
In analogy with (4.29), for an n-factor production function the partial elasticity
of substitution between factor i and factor j is defined as

σij =
MRSij
Xi/Xj

d(Xi/Xj)

dMRSij |Y=Ȳ

,

where it is understood that not only the output level but also all Xk, k 6= i, j,
are kept constant. Note that σji = σij. In the CES case considered in (4.38), all
the partial elasticities of substitution take the same value, 1/(1− β).

4.6 Concluding remarks

(incomplete)
When speaking of “sustained growth” in variables like K, Y, and C, we do

not mean growth in a narrow physical sense. Given limited natural resources
(matter and energy), exponential growth in a physical sense is of course not
possible. But sustained growth in terms of economic value is not ruled out. We
should for instance understand K broadly as “produced means of production”
of rising quality and falling material intensity (think of the rising effi ciency of
microprocessors). Similarly, C must be seen as a composite of consumer goods
and services with declining material intensity over time. This accords with the
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empirical fact that as income rises, the share of consumption expenditures devoted
to agricultural and industrial products declines and the share devoted to services,
hobbies, and amusement increases. Although “economic development”is perhaps
a more appropriate term (suggesting qualitative and structural change), we retain
standard terminology and speak of “economic growth”.

4.7 Literature notes and discussion

1. We introduced the assumption that at the macroeconomic level the “direc-
tion”of technological progress tends to be Harrod-neutral. Otherwise the model
will not be consistent with Kaldor’s stylized facts. The Harrod-neutrality of the
“direction” of technological progress is in the present model just an exogenous
feature. This raises the question whether there are mechanisms tending to gen-
erate Harrod-neutrality. Fortunately new growth theory provides clues as to the
sources of the speed as well as the direction of technological change. A facet
of this theory is that the direction of technological change is linked to the same
economic forces as the speed, namely profit incentives. See Acemoglu (2003) and
Jones (2006).
2. The literature discussing Kaldor’s “stylized facts” includes Attfield and

Temple (2010), Rognlie (2015), Gollin (2002), Elsby et al. (2013), and Karabar-
bounis and Neiman (2014). The latter three references conclude with serious
scepticism.
3. In Section 4.2 we claimed that from an empirical point of view, the adjust-

ment towards a steady state can be from above as well as from below. Indeed,
Cho and Graham (1996) find that “on average, countries with a lower income per
adult are above their steady-state positions, while countries with a higher income
are below their steady-state positions”.
As to the assessment of the role of uncertainty for the condition that dynamic

effi ciency is satisfied, in addition to Abel et al. (1989) other useful sources include
Ball et al. (1998) and Blanchard and Weil (2001).
4. In the Diamond OLG model as well as in many other models, a steady

state and a balanced growth path imply each other. Indeed, they are two sides
of the same process. There exist cases, however, where this equivalence does not
hold (some open economy models and some models with embodied technological
change, see Groth et al., 2010). Therefore, it is recommendable always to maintain
a terminological distinction between the two concepts.
5. Based on time-series econometrics, Attfield and Temple (2010) and others

find support for the Kaldor “facts”for the US and UK and thereby for an evolu-
tion roughly obeying balanced growth in terms of aggregate variables. This does
not rule out structural change. A changing sectorial composition of the economy
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is under certain conditions compatible with balanced growth (in a generalized
sense) at the aggregate level, cf. the “Kuznets facts” (see Kongsamut et al.,
2001, and Acemoglu, 2009).

6. Cases where the equivalence between steady state and balanced growth
does not hold include some open economy models and some models with embodied
technological change, see, e.g., Groth et al. (2010).

7. La Grandville (2009) contains a lot about analytical aspects linked to the
CES production function and the concept of elasticity of factor substitution.

8. On the declining material intensity of consumer goods and services as
technology develops, see Fagnart and Germain (2011).

From here incomplete:

Piketty (2014), Zucman ( ).

Demange and Laroque (1999, 2000) extend Diamond’s OLG model to uncer-
tain environments.

Keeping-up-with-the-Jones externalities. Do we work too much?

Blanchard, O., (2004) The Economic Future of Europe, J. Economic Perspec-
tives, vol. 18 (4), 3-26.

Prescott, E. (2003), Why do Americans work so much more than Europeans?
Federal Reserve Bank of Minneapolis Research Department StaffReport No. 321.
I Ch. 5?

Chari, V. V., and P. J. Kehoe (2006), Modern macroeconomics in practice:
How theory is shaping policy, J. of Economic Perspectives, vol. 20 (4), 3-28.

For expositions in depth of OLG modeling and dynamics in discrete time, see
Azariadis (1993), de la Croix and Michel (2002), and Bewley (2007).

Dynamic ineffi ciency, see also Burmeister (1980).

Two-sector OLG: Galor (1992). Galor’s book??

Bewley (2007).

Uzawa’s theorem: Uzawa (1961), Schlicht (2006).

The way the intuition behind the Uzawa theorem was presented in Section
4.1 draws upon Jones and Scrimgeour (2008).

La Grandville’s normalization of the CES function.

For more general and flexible production functions applied in econometric
work, see, e.g., Nadiri (1982).

Other aspects of life cycle behavior: education. OLG where people live three
periods.
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4.8 Appendix

A. Growth and interest arithmetic in discrete time

Let t = 0,±1,±2, . . . , and consider the variables zt, xt, and yt, assumed positive
for all t. Define ∆zt = zt − zt−1 and ∆xt and ∆yt similarly. These ∆’s need not
be positive. The growth rate of xt from period t− 1 to period t is defined as the
relative rate of increase in x, i.e., ∆xt/xt−1 ≡ xt/xt−1. And the growth factor for
xt from period t− 1 to period t is defined as 1 + xt/xt−1.
As we are here interested not in the evolution of growth rates, we simplify

notation by suppressing the t’s. So we write the growth rate of x as gx ≡ ∆x/x−1

and similarly for y and z.

PRODUCT RULE If z = xy, then 1 + gz = (1 + gx)(1 + gy) and gz ≈ gx + gy,
when gx and gy are “small”.

Proof. By definition, z = xy, which implies z−1 + ∆z = (x−1 + ∆x)(y−1 +
∆y). Dividing by z−1 = x−1y−1 gives 1 + ∆z/z−1 = (1 + ∆x/x−1)(1 + ∆y/y−1)
as claimed. By carrying out the multiplication on the right-hand side of this
equation, we get 1 + ∆z/z−1 = 1 + ∆x/x−1 + ∆y/y−1 + (∆x/x−1)(∆y/y−1) ≈
1 + ∆x/x−1 + ∆y/y1 when ∆x/x−1 and ∆y/y−1 are “small”. Subtracting 1 on
both sides gives the stated approximation. �
So the product of two positive variables will grow at a rate approximately

equal to the sum of the growth rates of the two variables.

FRACTION RULE If z = x
y
, then 1 + gz = 1+gx

1+gy
and gz ≈ gx − gy, when gx and

gy are “small”.

Proof. By interchanging z and x in Product Rule and rearranging, we get 1 +
∆z/z−1 = 1+∆x/x−1

1+∆y/y−1
, as stated in the first part of the claim. Subtracting 1 on

both sides gives ∆z/z−1 = ∆x/x−1−∆y/y−1

1+∆y/y−1
≈ ∆x/x−1 − ∆y/y−1, when ∆x/x−1

and ∆y/y−1 are “small”. This proves the stated approximation. �
So the ratio between two positive variables will grow at a rate approximately

equal to the excess of the growth rate of the numerator over that of the denomina-
tor. An implication of the first part of Claim 2 is: the ratio between two positive
variables is constant if and only if the variables have the same growth rate (not
necessarily constant or positive).

POWER FUNCTION RULE If z = xα, then 1 + gz = (1 + gx)
α.

Proof. 1 + gz ≡ z/z−1 = (x/x−1)α ≡ (1 + gx)
α. �

Given a time series x0, x1, ..., xn, by the average growth rate per period, or
more precisely, the average compound growth rate, is meant a g which satisfies
xn = x0(1 + g)n. The solution for g is g = (xn/x0)1/n − 1.
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Finally, the following approximation may be useful (for intuition) if used with
caution:

THE GROWTH FACTOR With n denoting a positive integer above 1 but “not
too large”, the growth factor (1 + g)n can be approximated by 1 + ng when g is
“small”. For g 6= 0, the approximation error is larger the larger is n.

Proof. (i) We prove the claim by induction. Suppose the claim holds for a fixed
n ≥ 2, i.e., (1 + g)n ≈ 1 + ng for g “small”. Then (1 + g)n+1 = (1 + g)n(1 + g)
≈ (1 + ng)(1 + g) = 1 + ng + g + ng2 ≈ 1 + (n + 1)g since g “small”implies g2

“very small”and therefore ng2 “small”if n is not “too”large. So the claim holds
also for n+ 1. Since (1 + g)2 = 1 + 2g+ g2 ≈ 1 + 2g, for g “small”, the claim does
indeed hold for n = 2. �
THE EFFECTIVE ANNUAL RATE OF INTEREST Suppose interest on a
loan is charged n times a year at the rate r/n per year. Then the effective annual
interest rate is (1 + r/n)n − 1.

B. Proof of the suffi ciency part of Uzawa’s theorem

For convenience we restate the full theorem here:

PROPOSITION 2 (Uzawa’s balanced growth theorem). Let {(Kt, Yt, Ct)}∞t=0 be a
path along which Yt, Kt, Ct, and St ≡ Yt − Ct are positive for all t = 0, 1, 2, . . . ,
and satisfy the dynamic resource constraint (4.2), given the production function
(4.4) and the labor force (4.5). Assume (1 + g)(1 + n) > 1− δ. Then:
(i) a necessary condition for this path to be a balanced growth path is that along
the path it holds that

Yt = F̃ (Kt, TtLt, 0), (*)

where Tt = A(1+g)t with 1+g ≡ (1+gY )/(1+n), gY being the constant growth
rate of output along the balanced growth path;
(ii) for any g ≥ 0 such that there is a q > (1 + g)(1 + n) − (1 − δ) with the
property that the production function F̃ in (4.4) allows an output-capital ratio
equal to q at t = 0 (i.e., F̃ (1, k̃−1, 0) = q for some real number k̃ > 0), a suffi cient
condition for F̃ to be consistent with a balanced growth path with output-capital
ratio equal to q is that F̃ can be written as in (*) with Tt = A(1 + g)t.

Proof (i) See Section 4.1. (ii) Suppose (*) holds with Tt = A(1 + g)t. Let g ≥ 0
be given such that there is a q > (1 + g)(1 + n)− (1− δ) > 0 with the property
that

F̃ (1, k̃−1, 0) = q (**)

for some constant k̃ > 0. Our strategy is to prove the claim by construction of
a path P = (Yt, Kt, Ct)

∞
t=0 which satisfies it. We let P be such that the saving-

income ratio is a constant ŝ ≡ [(1 + g)(1 + n)− (1− δ)] /q ∈ (0, 1), i.e., Yt − Ct

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



156 CHAPTER 4. A GROWING ECONOMY

≡ St = ŝYt for all t = 0, 1, 2, . . . . Inserting this, together with Yt = f(k̃t)TtLt,
where f(k̃t) ≡ F̃ (k̃t, 1, 0) and k̃t ≡ Kt/(TtLt), into (4.2), rearranging gives the
Solow equation (4.3), which we may rewrite as

k̃t+1 − k̃t =
ŝf(k̃t)− [(1 + g)(1 + n)− (1− δ)] k̃t

(1 + g)(1 + n)
.

We see that k̃t is constant if and only if k̃t satisfies the equation f(k̃t)/k̃t =
[(1 + g)(1 + n)− (1− δ)] /ŝ ≡ q. By (**) and the definition of f, the required
value of k̃t is k̃, which is thus the steady state for the constructed Solow model.
Letting K0 satisfy K0 = k̃AL0, where A = T0, we thus have k̃0 = K0/(T0L0) = k̃.
So that the initial value of k̃t equals the steady-state value. It follows that k̃t = k̃
for all t = 0, 1, 2, . . . , and so Yt/Kt = f(k̃t)/k̃t = f(k̃)/k̃ = q for all t ≥ 0. In
addition, Ct = (1− ŝ)Yt, so that Ct/Yt is constant along the path P. As both Y/K
and C/Y are thus constant along the path P , by (ii) of Proposition 1 follows that
P is a balanced growth path. �

It is noteworthy that the proof of the suffi ciency part of the theorem is con-
structive. It provides a method for constructing a balanced growth path with a
given technology growth rate and a given output-capital ratio.

C. Homothetic utility functions

Generalities A set C in Rn is called a cone if x ∈ C and λ > 0 implies λx ∈ C.
A function f(x) = f(x1,. . . ,xn) is homothetic in the cone C if for all x,y ∈ C
and all λ > 0, f(x) = f(y) implies f(λx) = f(λy).

Consider the continuous utility function U(x1, x2), defined in R2
+. Suppose U

is homothetic and that the consumption bundles (x1, x2) and (y1, y2) are on the
same indifference curve, i.e., U(x1, x2) = U(y1, y2). Then for any λ > 0 we have
U(λx1, λx2) = U(λy1, λy2) so that the bundles (λx1, λx2) and (λy1, λy2) are also
on the same indifference curve.
For a continuous utility function U(x1, x2), defined in R2

+ and increasing in
each of its arguments (as is our life time utility function in the Diamond model),
one can show that U is homothetic if and only if U can be written U(x1, x2) ≡
F (f(x1, x2)) where the function f is homogeneous of degree one and F is an
increasing function. The “if”part is easily shown. Indeed, if U(x1, x2) = U(y1, y2),
then F (f(x1, x2)) = F (f(y1, y2)). Since F is increasing, this implies f(x1, x2)
= f(y1, y2). Because f is homogeneous of degree one, if λ > 0, then f(λx1, λx2)
= λf(x1, x2) and f(λy1, λy2) = λf(y1, y2) so that U(λx1, λx2) = F (f(λx1, λx2))
= F (f(λy1, λy2)) = U(λy1, λy2), which shows that U is homothetic. As to the
“only if”part, see Sydsaeter et al. (2002).
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Using differentiability of our homothetic time utility function U(x1, x2) ≡
F (f(x1, x2)), we find the marginal rate of substitution of good 2 for good 1 to be

MRS =
dx2

dx1 |U=Ū

=
∂U/∂x1

∂U/∂x2

=
F ′f1(x1, x2)

F ′f2(x1, x2)
=
f1(1, x2

x1
)

f2(1, x2

x1
)
. (4.39)

The last equality is due to Euler’s theorem saying that when f is homogeneous of
degree 1, then the first-order partial derivatives of f are homogeneous of degree
0. Now, (4.39) implies that for a given MRS, in optimum reflecting a given
relative price of the two goods, the same consumption ratio, x2/x1, will be chosen
whatever the budget. For a given relative price, a rising budget (rising wealth)
will change the position of the budget line, but not its slope. So MRS will not
change, which implies that the chosen pair (x1, x2) will move outward along a
given ray in R2

+. Indeed, as the intercepts with the axes rise proportionately with
the budget (the wealth), so will x1 and x2.

Proof that the utility function in (4.22) is homothetic In Section 4.2 we
claimed that (4.22) is a homothetic utility function. This can be proved in the
following way. There are two cases to consider. Case 1: θ > 0, θ 6= 1.We rewrite
(4.22) as

U(c1, c2) =
1

1− θ
[
(c1−θ

1 + βc1−θ
2 )1/(1−θ)]1−θ − 1 + β

1− θ ,

where β ≡ (1 + ρ)−1. The function x = g(c1, c2) ≡ (c1−θ
1 + βc1−θ

2 )1/(1−θ) is
homogeneous of degree one and the function G(x) ≡ (1/(1 − θ))x1−θ − (1 +
β)/(1− θ) is an increasing function, given θ > 0, θ 6= 1. Case 2: θ = 1. Here we
start from U(c1, c2) = ln c1 + β ln c2. This can be written

U(c1, c2) = (1 + β) ln
[
(c1c

β
2 )1/(1+β)

]
,

where x = g(c1, c2) = (c1c
β
2 )1/(1+β) is homogeneous of degree one and G(x) ≡

(1 + β) lnx is an increasing function. �

D. General formulas for the elasticity of factor substitution

We here prove (4.30) and (4.31). Given the neoclassical production function
F (K,L), the slope of the isoquant F (K,L) = Ȳ at the point (K̄, L̄) is

dK

dL |Y=Ȳ
= −MRS = −FL(K̄, L̄)

FK(K̄, L̄)
. (4.40)
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We consider this slope as a function of the value of k ≡ K/L as we move along
the isoquant. The derivative of this function is

−dMRS

dk |Y=Ȳ
= −dMRS

dL |Y=Ȳ

dL

dk |Y=Ȳ

= −(FL)2FKK − 2FKFLFKL + (FK)2FLL
F 3
K

dL

dk |Y=Ȳ
(4.41)

by (2.53) of Chapter 2. In view of L ≡ K/k we have

dL

dk |Y=Ȳ
=
k dK
dk |Y=Ȳ

−K

k2
=
k dK
dL |Y=Ȳ

dL
dk |Y=Ȳ

−K

k2
=
−kMRS dL

dk |Y=Ȳ
−K

k2
.

From this we find
dL

dk |Y=Ȳ
= − K

(k +MRS)k
,

to be substituted into (4.41). Finally, we substitute the inverse of (4.41) together
with (4.40) into the definition of the elasticity of factor substitution:

σ(K,L) ≡ MRS

k

dk

dMRS |Y=Ȳ

= −FL/FK
k

(k + FL/FK)k

K

F 3
K

[(FL)2FKK − 2FKFLFKL + (FK)2FLL]

= − FKFL(FKK + FLL)

KL [(FL)2FKK − 2FKFLFKL + (FK)2FLL]
,

which is the same as (4.30).
Under CRS, this reduces to

σ(K,L) = − FKFLF (K,L)

KL [(FL)2FKK − 2FKFLFKL + (FK)2FLL]
(from (2.54) with h = 1)

= − FKFLF (K,L)

KLFKL [−(FL)2L/K − 2FKFL − (FK)2K/L]
(from (2.60))

=
FKFLF (K,L)

FKL(FLL+ FKK)2
=

FKFL
FKLF (K,L)

, (using (2.54) with h = 1)

which proves the first part of (4.31). The second part is an implication of rewriting
the formula in terms of the production in intensive form.
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E. Properties of the CES production function

The generalized CES production function is

Y = A
[
αKβ + (1− α)Lβ

] γ
β , (4.42)

where A, α, and β are parameters satisfying A > 0, 0 < α < 1, and β < 1,
β 6= 0, γ > 0. If γ < 1, there is DRS, if γ = 1, CRS, and if γ > 1, IRS. The
elasticity of substitution is always σ = 1/(1 − β). Throughout below, k means
K/L.

The limiting functional forms We claimed in the text that, for fixed K > 0
and L > 0, (4.42) implies:

lim
β→0

Y = A(KαL1−α)γ = ALγkαγ, (*)

lim
β→−∞

Y = Amin(Kγ, Lγ) = ALγ min(kγ, 1). (**)

Proof. Let q ≡ Y/(ALγ). Then q = (αkβ + 1− α)γ/β so that

ln q =
γ ln(αkβ + 1− α)

β
≡ m(β)

β
, (4.43)

where

m′(β) =
γαkβ ln k

αkβ + 1− α =
γα ln k

α + (1− α)k−β
. (4.44)

Hence, by L’Hôpital’s rule for “0/0”,

lim
β→0

ln q = lim
β→0

m′(β)

1
= γα ln k = ln kγα,

so that limβ→0 q = kγα, which proves (*). As to (**), note that

lim
β→−∞

kβ = lim
β→−∞

1

k−β
→


0 for k > 1,
1 for k = 1,
∞ for k < 1.

Hence, by (4.43),

lim
β→−∞

ln q =

{
0 for k ≥ 1,

limβ→−∞
m′(β)

1
= γ ln k = ln kγ for k < 1,

where the result for k < 1 is based on L’Hôpital’s rule for “∞/-∞”. Consequently,

lim
β→−∞

q =

{
1 for k ≥ 1,
kγ for k < 1,

which proves (**). �
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Properties of the isoquants of the CES function The absolute value of
the slope of an isoquant for (4.42) in the (L,K) plane is

MRSKL =
∂Y/∂L

∂Y/∂K
=

1− α
α

k1−β →
{

0 for k → 0,
∞ for k →∞. (*)

This holds whether β < 0 or 0 < β < 1.
Concerning the asymptotes and terminal points, if any, of the isoquant Y = Ȳ

we have from (4.42) Ȳ β/γ = A
[
αKβ + (1− α)Lβ

]
. Hence,

K =

(
Ȳ

β
γ

Aα
− 1− α

α
Lβ

) 1
β

,

L =

(
Ȳ

β
γ

A(1− α)
− α

1− αK
β

) 1
β

.

From these two equations follows, when β < 0 (i.e., 0 < σ < 1), that

K → (Aα)−
1
β Ȳ

1
γ for L→∞,

L → [A(1− α)]−
1
β Ȳ

1
γ for K →∞.

When instead β > 0 (i.e., σ > 1), the same limiting formulas obtain for L → 0
and K → 0, respectively.

Properties of the CES function on intensive form Given γ = 1, i.e., CRS,
we have y ≡ Y/L = A(αkβ + 1− α)1/β from (4.42). Then

dy

dk
= A

1

β
(αkβ + 1− α)

1
β
−1αβkβ−1 = Aα

[
α + (1− α)k−β

] 1−β
β .

Hence, when β < 0 (i.e., 0 < σ < 1),

y =
A

(akβ + 1− α)−1/β
→
{

0 for k → 0,
A(1− α)1/β for k →∞.

dy

dk
=

Aα

[α + (1− α)k−β](β−1)/β
→
{
Aα1/β for k → 0,

0 for k →∞.

If instead β > 0 (i.e., σ > 1),

y →
{
A(1− α)1/β for k → 0,
∞ for k →∞.

dy

dk
→

{
∞ for k → 0,

Aα1/β for k →∞.

The output-capital ratio is y/k = A
[
α + (1− α)k−β

] 1
β and has the same limiting

values as dy/dk, when β > 0.
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Continuity at the boundary of R2
+ When 0 < β < 1, the right-hand side of

(4.42) is defined and continuous also on the boundary of R2
+. Indeed, we get

Y = F (K,L) = A
[
αKβ + (1− α)Lβ

] γ
β →

{
Aα

γ
βKγ for L→ 0,

A(1− α)
γ
βLγ for K → 0.

When β < 0, however, the right-hand side is not defined on the boundary. We
circumvent this problem by redefining the CES function in the following way
when β < 0:

Y = F (K,L) =

{
A
[
αKβ + (1− α)Lβ

] γ
β when K > 0 and L > 0,

0 when either K or L equals 0.
(4.45)

We now show that continuity holds in the extended domain. When K > 0 and
L > 0, we have

Y
β
γ = A

β
γ
[
αKβ + (1− α)Lβ

]
≡ A

β
γG(K,L). (4.46)

Let β < 0 and (K,L) → (0, 0). Then, G(K,L) → ∞, and so Y β/γ → ∞. Since
β/γ < 0, this implies Y → 0 = F (0, 0), where the equality follows from the
definition in (4.45). Next, consider a fixed L > 0 and rewrite (4.46) as

Y
1
γ = A

1
γ
[
αKβ + (1− α)Lβ

] 1
β = A

1
γL(αkβ + 1− α)

1
β

=
A

1
γL

(akβ + 1− α)−1/β
→ 0 for k → 0,

when β < 0. Since 1/γ > 0, this implies Y → 0 = F (0, L), from (4.45). Finally,
consider a fixed K > 0 and let L/K → 0. Then, by an analogue argument we get
Y → 0 = F (K, 0), (4.45). So continuity is maintained in the extended domain.

4.9 Exercises

4.1 (the aggregate saving rate in steady state)

a) In a well-behaved Diamond OLG model let n be the rate of population
growth and k∗ the steady state capital-labor ratio (until further notice, we
ignore technological progress). Derive a formula for the long-run aggregate
net saving rate, SN/Y, in terms of n and k∗. Hint: use that for a closed
economy SN = Kt+1 −Kt.
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b) In the Solow growth model without technological change a similar relation
holds, but with a different interpretation of the causality. Explain.

c) Compare your result in a) with the formula for SN/Y in steady state one
gets in any model with the same CRS-production function and no techno-
logical change. Comment.

d) Assume that n = 0. What does the formula from a) tell you about the level
of net aggregate savings in this case? Give the intuition behind the result in
terms of the aggregate saving by any generation in two consecutive periods.
One might think that people’s rate of impatience (in Diamond’s model the
rate of time preference ρ) affect SN/Y in steady state. Does it in this case?
Why or why not?

e) Suppose there is Harrod-neutral technological progress at the constant rate
g > 0. Derive a formula for the aggregate net saving rate in the long run in
a well-behaved Diamond model in this case.

f) Answer d) with “from a)”replaced by “from e)”. Comment.

g) Consider the statement: “In Diamond’s OLG model any generation saves
as much when young as it dissaves when old.”True or false? Why?

4.2 (increasing returns to scale and balanced growth)
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