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Chapter 1

Introduction

The art of successful theorizing is to make the inevitable simplifying
assumptions in such a way that the final results are not very sensitive.

−Robert M. Solow (1956, p. 65)

1.1 Macroeconomics

1.1.1 The field

Economics is the social science that studies the production and distribution of
goods and services in society. Then, what defines the branch of economics named
macroeconomics? There are two defining characteristics. First, macroeconomics
is the systematic study of the economic interactions in society as a whole. This
could also be said of microeconomic general equilibrium theory, however. The
second defining characteristic of macroeconomics is that it aims at understanding
the empirical regularities in the behavior of aggregate economic variables such
as aggregate production, investment, unemployment, the general price level for
goods and services, the inflation rate, the level of interest rates, the level of real
wages, the foreign exchange rate, productivity growth etc. Thus macroeconomics
focuses on the major lines of the economics of a society.
The aspiration of macroeconomics is three-fold:

1. to explain the levels of the aggregate variables as well as their movement
over time in the short run and the long run;

2. to make well-founded forecasts possible;

3. to provide foundations for rational economic policy applicable to macroeco-
nomic problems, be they short-run distress in the form of economic recession
or problems of a more long-term, structural character.

3



4 CHAPTER 1. INTRODUCTION

We use economic models to make our complex economic environment accessi-
ble for theoretical analysis. What is an economic model? It is a way of organizing
one’s thoughts about the economic functioning of a society. A more specific an-
swer is to define an economic model as a conceptual structure based on a set of
mathematically formulated assumptions which have an economic interpretation
and from which empirically testable predictions can be derived. In particular,
a macroeconomic model is an economic model concerned with macroeconomic
phenomena, i.e., the short-run fluctuations of aggregate variables as well as their
long-run trend.

Any economic analysis is based upon a conceptual framework. Formulating
this framework as a precisely stated economic model helps to break down the issue
into assumptions about the concerns and constraints of households and firms and
the character of the market environment within which these agents interact. The
advantage of this approach is that it makes rigorous reasoning possible, lays bare
where the underlying disagreements behind different interpretations of economic
phenomena are, and makes sensitivity analysis of the conclusions amenable. By
being explicit about agents’concerns, the technological constraints, and the social
structures (market forms, social conventions, and legal institutions) conditioning
their interactions, this approach allows analysis of policy interventions, including
the use of well-established tools of welfare economics. Moreover, mathematical
modeling is a simple necessity to keep track of the many mutual dependencies
and to provide a consistency check of the many accounting relationships involved.
And mathematical modeling opens up for use of powerful mathematical theorems
from the mathematical toolbox. Without these math tools it would in many cases
be impossible to reach any conclusion whatsoever.

Undergraduate students of economics are often perplexed or even frustrated by
macroeconomics being so preoccupied with composite theoretical models. Why
not study the issues each at a time? The reason is that the issues, say housing
prices and changes in unemployment, are not separate, but parts of a complex
system of mutually dependent variables. This also suggests that macroeconomics
must take advantage of theoretical and empirical knowledge from other branches
of economics, including microeconomics, industrial organization, game theory,
political economy, behavioral economics, and even sociology and psychology.

At the same time models necessarily give a simplified picture of the economic
reality. Ignoring secondary aspects and details is indispensable to be able to
focus on the essential features of a given problem. In particular macroeconomics
deliberately simplifies the description of the individual actors so as to make the
analysis of the interaction between different types of actors manageable.

The assessment of − and choice between − competing simplifying frameworks
should be based on how well they perform in relation to the three-fold aim of
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1.1. Macroeconomics 5

macroeconomics listed above, given the problem at hand. A necessary condition
for good performance is the empirical tenability of the model’s predictions. A
guiding principle in the development of useful models therefore lies in confronta-
tion of the predictions as well as the crucial assumptions with data. This can be
based on a variety of methods ranging from sophisticated econometric techniques
to qualitative case studies.
Three constituents make up an economic theory: 1) the union of connected

and non-contradictory economic models, 2) the theorems derived from these, and
3) the conceptual system defining the correspondence between the variables of
the models and the social reality to which they are to be applied. Being about
the interaction of human beings in societies, the subject matter of economic the-
ory is extremely complex and at the same time history dependent. The overall
political, social, and economic institutions (“rules of the game”in a broad sense)
evolve. These circumstances explain why economic theory is far from the natural
sciences with respect to precision and undisputable empirical foundation. Espe-
cially in macroeconomics, to avoid confusion one should be aware of the existence
of differing conceptions and in several matters conflicting theoretical schools.

1.1.2 The different “runs”

This textbook is about the macroeconomics of the industrialized market economies
of today. We study basic concepts, models, and analytical methods of rele-
vance for understanding macroeconomic processes where sometimes centripetal
and sometimes centrifugal forces are dominating. A simplifying device is the
distinction between “short-run”, “medium-run”, and “long-run” analysis. The
first concentrates on the behavior of the macroeconomic variables within a time
horizon of a few years, whereas “long-run” analysis deals with a considerably
longer time horizon − indeed, long enough for changes in the capital stock, pop-
ulation, and technology to have a dominating influence on changes in the level of
production. The “medium run”is then something in between.
To be more specific, long-run macromodels study the evolution of an econ-

omy’s productive capacity over time. Typically a time span of at least 15 years
is considered. The analytical framework is by and large supply-dominated. That
is, variations in the employment rate for labor and capital due to demand fluctu-
ations are abstracted away. This can to a first approximation be justified by the
fact that these variations, at least in advanced economies, tend to remain within
a fairly narrow band. Therefore, under “normal” circumstances the economic
outcome after, say, a 30 years’ interval reflects primarily the change in supply
side factors such as the labor force, the capital stock, and the technology. The
fluctuations in demand and monetary factors tend to be of limited quantitative

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



6 CHAPTER 1. INTRODUCTION

importance within such a time horizon.

By contrast, when we speak of short-run macromodels, we think of models
concentrating on mechanisms that determine how fully an economy uses its pro-
ductive capacity at a given point in time. The focus is on the level of output and
employment within a time horizon less than, say, four years. These models are
typically demand-dominated. In this time perspective the demand side, mone-
tary factors, and price rigidities matter significantly. Shifts in aggregate demand
(induced by, e.g., changes in fiscal or monetary policy, exports, interest rates,
the general state of confidence, etc.) tend to be accommodated by changes in
the produced quantities rather than in the prices of manufactured goods and ser-
vices. By contrast, variations in the supply of production factors and technology
are diminutive and of limited importance within this time span. With Keynes’
words the aim of short-run analysis is to explain “what determines the actual
employment of the available resources”(Keynes 1936, p. 4).

The short and the long run make up the traditional subdivision of macro-
economics. It is convenient and fruitful, however, to include also a medium run,
referring to a time interval of, say, four-to-fifteen years.1 We shall call models
attempting to bridge the gap between the short and the long run medium-run
macromodels. These models deal with the regularities exhibited by sequences of
short periods. However, in contrast to long-run models which focus on the trend
of the economy, medium-run models attempt to understand the pattern charac-
terizing the fluctuations around the trend. In this context, variations at both
the demand and supply side are important. Indeed, at the centre of attention
is the dynamic interaction between demand and supply factors, the correction
of expectations, and the time-consuming adjustment of wages and prices. Such
models are also sometimes called business cycle models.

Returning to the “long run”, what does it embrace in this book? Well, since
the surge of “new growth theory”or “endogenous growth theory”in the late 1980s
and early 1990s, growth theory has developed into a specialized discipline study-
ing the factors and mechanisms that determine the evolution of technology and
productivity (Paul Romer 1987, 1990; Phillipe Aghion and Peter Howitt, 1992).
An attempt to give a systematic account of this expanding line of work within
macroeconomics would take us too far. When we refer to “long-run macromod-
els”, we just think of macromodels with a time horizon long enough such that
changes in the capital stock, population, and technology matter. Apart from a
taste of “new growth theory”in Chapter 11, we leave the sources of changes in
technology out of consideration, which is tantamount to regarding these changes

1These number-of-years figures are only a rough indication. The different “runs”are relative
concepts and their appropriateness depends on the specific problem and circumstances at hand.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



1.1. Macroeconomics 7

as exogenous.2

Figure 1.1: Quarterly Industrial Production Index in six major countries (Q1-1958 to
Q2-2013; index Q1-1961=100). Source: OECD Industry and Service Statistics. Note:
Industrial production includes manufacturing, mining and quarrying, electricity, gas,
and water, and construction.

In addition to the time scale dimension, the national-international dimension
is important for macroeconomics. Most industrialized economies participate in
international trade of goods and financial assets. This results in considerable
mutual dependency and co-movement of these economies. Downturns as well as
upturns occur at about the same time, as indicated by Fig. 1.1. In particular the
economic recessions triggered by the oil price shocks in 1973 and 1980 and by the
disruption of credit markets in the outbreak 2007 of the Great Financial Crisis
are visible across the countries, as also shown by the evolution of GDP, cf. Fig.
1.2. Many of the models and mechanisms treated in this text will therefore be
considered not only in a closed economy setup, but also from the point of view
of open economies.

2References to textbooks on economic growth are given in Literature notes at the end of this
chapter.
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8 CHAPTER 1. INTRODUCTION
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Figure 1.2: Indexed real GDP for Denmark, Eurozone and US, 1995-2012 (2007=100).
Source: EcoWin and Statistics Denmark.

1.2 Components of macroeconomic models

1.2.1 Basics

(Incomplete)

Basic categories

• Agents: We use simple descriptions of the economic agents: A household is
an abstract entity making consumption, saving and labor supply decisions.
A firm is an abstract entity making decisions about production and sales.
The administrative staff and sales personnel are treated along with the
production workers as an undifferentiated labor input.

• Technological constraints.

• Goods, labor, and assets markets.

• The institutions and social norms regulating the economic interactions (for-
mal and informal “rules of the game”).

Types of variables
Endogenous vs. exogenous variables.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



1.2. Components of macroeconomic models 9

Stocks vs. flows.
State variables vs. control variables (decision variables). Closely related to

this distinction is that between a predetermined variable and a jump variable. The
former is a variable whose value is determined historically at any point in time.
For example, the stock (quantity) of water in a bathtub at time t is historically
determined as the accumulated quantity of water stemming from the previous
inflow and outflow. But if yt is a variable which is not tied down by its own past
but, on the contrary, can immediately adjust if new conditions or new information
emerge, then yt is a non-predetermined variable, also called a jump variable. A
decision about how much to consume and how much to save − or dissave − in
a given month is an example of a jump variable. Returning to our bath tub
example: in the moment we pull out the waste plug, the outflow of water per
time unit will jump from zero to a positive value − it is a jump variable.

Types of basic model relations
Although model relations can take different forms, in macroeconomics they

often have the form of equations. A taxonomy for macroeconomic model relations
is the following:

1. Technology equations describe relations between inputs and output (pro-
duction functions and similar).

2. Preference equations express preferences, e.g. U =
∑T

t=0
u(ct)

(1+ρ)t
, ρ > 0, u′ >

0, u′′ < 0.

3. Budget constraints, whether in the form of an equation or an inequality.

4. Institutional equations refer to relationships required by law (e.g., how the
tax levied depends on income) and similar.

5. Behavioral equations describe the behavioral response to the determinants
of behavior. This includes an agent’s optimizing behavior written as a func-
tion of its determinants. A consumption function is an example. Whether
first-order conditions in optimization problems should be considered behav-
ioral equations or just separate first-order conditions is a matter of taste.

6. Identity equations are true by definition of the variables involved. National
income accounting equations are an example.

7. Equilibrium equations define the condition for equilibrium (“state of rest”)
of some kind, for instance equality of Walrasian demand and Walrasian
supply. No-arbitrage conditions for the asset markets also belong under the
heading equilibrium condition.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



10 CHAPTER 1. INTRODUCTION

8. Initial conditions are equations fixing the initial values of the state variables
in a dynamic model

Types of analysis
Statics vs. dynamics. Comparative dynamics vs. study of dynamic effects of

a parameter shift in historical time.
Macroeconomics studies processes in real time. The emphasis is on dynamic

models, that is, models that establishes a link from the state of the economic
system to the subsequent state. A dynamic model thus allows a derivation of
the evolution over time of the endogenous variables. A static model is a model
where time does not enter or where all variables refer to the same point in time.
Occasionally we consider static models, or more precisely quasi-static models. The
modifier “quasi-”is meant to indicate that although the model is a framework for
analysis of only a single period, the model considers some variables as inherited
from the past and some variables that involve expectations about the future.
What we call temporary equilibrium models are of this type. Their role is to serve
as a prelude to a more elaborate dynamic model dealing with the same elements.
Dynamic analysis aims at establishing dynamic properties of an economic

system: is the system stable or unstable, is it asymptotically stable, if so, is it
globally or only locally asymptotically stable, is it oscillatory? If the system is
asymptotically stable, how fast is the adjustment?
Partial equilibrium vs. general equilibrium:
We say that a given single market is in partial equilibrium at a given point in

time if for arbitrarily given prices and quantities in the other markets, the agents’
chosen actions in this market are mutually compatible. In contrast the concept of
general equilibrium take the mutual dependencies between markets into account.
We say that a given economy is in general equilibrium at a given point in time if
in all markets the actions chosen by all the agents are mutually compatible.
An analyst trying to clarify a partial equilibrium problem is doing partial

equilibrium analysis. Thus partial equilibrium analysis does not take into account
the feedbacks from these actions to the rest of the economy and the feedbacks
from these feedbacks − and so on. In contrast, an analyst trying to clarify a
general equilibrium problem is doing general equilibrium analysis. This requires
considering the mutual dependencies in the system of markets as a whole.
Sometimes even the analysis of the constrained maximization problem of a

single decision maker is called partial equilibrium analysis. Consider for instance
the consumption-saving decision of a household. Then the analytical derivation
of the saving function of the household is by some authors included under the
heading partial equilibrium analysis, which may seem natural since the real wage
and real interest rate appearing as arguments in the derived saving function are

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



1.2. Components of macroeconomic models 11

arbitrary. Indeed, what the actual saving of the young will be in the end, depends
on the real wage and real interest rate formed in the general equilibrium.
In this book we call the analysis of a single decision maker’s problem partial

analysis, not partial equilibrium analysis. The motivation for this is that trans-
parency is improved if one preserves the notion of equilibrium for a state of a
market or a state of a system of markets .

1.2.2 The time dimension of input and output

In macroeconomic theory the production of a firm, a sector, or the economy as a
whole is often represented by a two-inputs-one-output production function,

Y = F (K,L), (1.1)

where Y is output (value added in real terms), K is capital input, and L is
labor input (K ≥ 0, L ≥ 0). The idea is that for several issues it is useful to
think of output as a homogeneous good which is produced by two inputs, one of
which is capital, by which we mean a producible durable means of production, the
other being labor, usually considered a non-producible human input. Of course,
thinking of these variables as representing one-dimensional entities is a drastic
abstraction, but may nevertheless be worthwhile in a first approach.
Simple as it looks, an equation like (1.1) is not always interpreted in the

right way. A key issue here is: how are the variables entering (1.1) denominated,
that is, in what units are the variables measured? It is most satisfactory, both
from a theoretical and empirical point of view, to think of both outputs and
inputs as flows: quantities per unit of time. This is generally recognized as far
as Y is concerned. Unfortunately, it is less recognized concerning K and L, a
circumstance which is probably related to a tradition in macroeconomic notation,
as we will now explain.
Let the time unit be one year. Then the K appearing in the production

function should be seen as the number of machine hours per year. Similarly, L
should be seen as the number of labor hours per year. Unless otherwise specified,
it should be understood that the rate of utilization of the production factors is
constant over time; for convenience, one can then normalize the rate of utilization
of each factor to equal one. Thus, with one year as our time unit, we imagine
that “normally”a machine is in operation in h hours during a year. Then, we
define one machine-year as the service of a machine in operation h hours a year.
If K machines are in operation and on average deliver one machine year per year,
then the total capital input is K machine-years per year:

K (machine-yrs/yr) = K (machines)× 1 ((machine-yrs/yr)/machine), (1.2)

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



12 CHAPTER 1. INTRODUCTION

where the denomination of the variables is indicated in brackets. Similarly, if
the stock of laborers is L men and on average they deliver one man-year (say h
hours) per year, then the total labor input is L man-years per year:

L(man-yrs/yr) = L(men)× 1((man-yrs/yr)/man). (1.3)

One of the reasons that confusion of stocks and flows may arise is the tradition
in macroeconomics to use the same symbol, K, for the capital input (the number
of machine hours per year), in (1.1) as for the capital stock in an accumulation
equation like

Kt+1 = Kt + It − δKt. (1.4)

Here the interpretation of Kt is as a capital stock (number of machines) at the
beginning of period t, It is gross investment, and δ is the rate of physical capital
depreciation due to wear and tear (0 ≤ δ ≤ 1). In (1.4) there is no role for the
rate of utilization of the capital stock, which is, however, of key importance in
(1.1). Similarly, there is a tradition in macroeconomics to denote the number of
heads in the labor force by L and write, for example, Lt = L0(1 + n)t, where n
is a constant growth rate of the labor force. Here the interpretation of Lt is as a
stock (number of persons). There is no role for the average rate of utilization in
actual employment of this stock over the year.
This text will not attempt a break with this tradition of using the same symbol

for two in principle different variables. But we insist on interpretations such that
the notation is consistent. This requires normalization of the utilization rates for
capital and labor in the production function to equal one, as indicated in (1.2)
and (1.3) above. We are then allowed to use the same symbol for a stock and the
corresponding flow because the values of the two variables will coincide.
An illustration of the importance of being aware of the distinction between

stock and flows appears when we consider the following measure of per capita
income in a given year:

GDP

N
=

GDP

#hours of work
× #hours of work

#employed workers
×#employed workers

#workers
×#workers

N
,

(1.5)
where N, #workers, and #employed workers indicate, say, the average size of the
population, the workforce (including the unemployed), and the employed work-
force, respectively, during the year. That is, aggregate per capita income equals
average labor productivity times average labor intensity times the crude employ-
ment rate times the workforce participation rate.3 An increase from one year to

3By the crude employment rate is meant the number of employed individuals, without
weighting by the number of hours they work per week, divided by the total number of individuals
in the labor force.
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1.3. Macroeconomic models and national income accounting 13

the next in the ratio on the left-hand side of the equation reflects the net effect
of changes in the four ratios on the right-hand side. Similarly, a fall in per capita
income (a ratio between a flow and a stock) need not reflect a fall in productiv-
ity (GDP/#hours of work, a ratio of two flows), but may reflect, say, a fall in
the number of hours per member of the workforce (#hours of work/#workers)
due to a rise in unemployment (fall in #employed workers/workers) or an ageing
population (fall in #workers/N).
A second conceptual issue concerning the production function in (1.1) re-

lates to the question: what about land and other natural resources? As farming
requires land and factories and offi ce buildings require building sites, a third
argument, a natural resource input, should in principle appear in (1.1). In theo-
retical macroeconomics for industrialized economies this third factor is often left
out because it does not vary much as an input to production and tends to be of
secondary importance in value terms.
A third conceptual issue concerning the production function in (1.1) relates to

the question: what about intermediate goods? By intermediate goods we mean
non-durable means of production like raw materials and energy. Certainly, raw
materials and energy are generally necessary inputs at the micro level. Then
it seems strange to regard output as produced by only capital and labor. The
point is that in macroeconomics we often abstract from the engineering input-
output relations, involving intermediate goods. We imagine that at a lower stage
of production, raw materials and energy are continuously produced by capital
and labor, but are then immediately used up at a higher stage of production,
again using capital and labor. The value of these materials are not part of value
added in the sector or in the economy as a whole. Since value added is what
macroeconomics usually focuses at and what the Y in (1.1) represents, materials
therefore are often not explicit in the model.
On the other hand, if of interest for the problems studied, the analysis should,

of course, take into account that at the aggregate level in real world situations,
there will generally be a minor difference between produced and used-up raw
materials which then constitute net investment in inventories of materials.
To further clarify this point as well as more general aspects of how macro-

economic models are related to national income and product accounts, the next
section gives a review of national income accounting.

1.3 Macroeconomic models and national income
accounting

Stylized national income and product accounts

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



14 CHAPTER 1. INTRODUCTION

(very incomplete)

We give here a stylized picture of national income and product accounts with
emphasis on the conceptual structure. The basic point to be aware of is that
national income accounting looks at output from three sides:

• the production side (value added),

• the use side,

• the income side.

These three “sides”refer to different approaches to the practical measurement
of production and income: the “output approach”, the “expenditure approach”,
and the “income approach”.
Consider a closed economy with three production sectors. Sector 1 produces

raw materials (or energy) in the amount Q1 per time unit, Sector 2 produces
durable capital goods in the amount Q2 per time unit, and the third sector pro-
duces consumption goods in the amount Q3 per time unit. It is common to distin-
guish between three basic production factors available ex ante a given production
process. These are land (or, more generally, non-producible natural resources),
labor, and capital (producible durable means of production). In practice also raw
materials are a necessary production input. Traditionally, this input has been
regarded as itself produced at an early stage within the production process and
then used up during the remainder of the production process. In formal dynamic
analysis, however, both capital and raw materials are considered produced prior
to the production process in which the latter are used up. This is why we include
raw materials as a fourth production factor in the production functions of the
three sectors.
....

1.4 Some terminological points

On the vocabulary used in this book:
(Incomplete)
Economic terms
Physical capital refers to stocks of reproducible durable means of production

such as machines and structures. Reproducible non-durable means of production
include raw materials and energy and are sometimes called intermediate goods.
Non-reproducible means of production, such as land and other natural resources,
are in this book not included under the heading “capital”but just called natural
resources.
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1.5. Brief history of macroeconomics 15

We follow the convention in macroeconomics and, unless otherwise specified,
use “capital”for physical capital, that is, a production factor. In other branches
of economics and in everyday language “capital”may mean the funds (sometimes
called “financial capital”) that finance purchases of physical capital.

By a household’s wealth (sometimes denoted net wealth), W, we mean the
value of the total stock of resources possessed by the household at a given point in
time. This wealth generally has two main components, the human wealth, which
is the present value of the stream of future labor income, and the non-human
wealth. The latter is the sum of the value of the household’s physical assets (also
called real assets) and its net financial assets. Typically, housing wealth is the
dominating component in households’physical assets. By net financial assets is
meant the difference between the value of financial assets and the value of financial
liabilities. Financial assets include cash as well as paper claims that entitles the
owner to future transfers from the issuer of the claim, perhaps conditional on
certain events. Bonds and shares are examples. And a financial liability of a
household (or other type of agent) is an obligation to transfer resources to others
in the future. A mortgage loan is an example.

In spite of this distinction between what is called physical assets and what is
called financial assets, often in macroeconomics (and in this book unless other-
wise indicated) the household’s “financial wealth” is used synonymous with its
non-human wealth, that is, including purely physical assets like land, house, car,
machines, and other equipment. Somewhat at odds with this convention macro-
economics (including this book) generally uses “investment”as synonymous with
“physical capital investment”, that is, procurement of new machines and plants
by firms and new houses or apartments by households. Then, when having pur-
chases of financial assets in mind, macroeconomists talk of financial investment.

...

Saving (flow) vs. savings (stock).

...

1.5 Brief history of macroeconomics

Text not yet available.

–

Akerlof and Shiller (2009)

Gali (2008)
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1.6 Literature notes

....
The modern theory of economic growth (“new growth theory”, “endogenous

growth theory”) is extensively covered in dedicated textbooks like Aghion and
Howitt (1998), Jones (2002), Barro and Sala-i Martin (2004), Acemoglu (2009),
and Aghion and Howitt (2009). A good introduction to analytical development
economics is Basu (1997).
Snowdon and Vane (1997), Blanchard (2000), and Woodford (2000) present

useful overviews of the history of macroeconomics. For surveys on recent devel-
opments on the research agenda within theory as well as practical policy analysis,
see Mankiw (2006), Blanchard (2008), and Woodford (2009). Somewhat different
perspectives, from opposite poles, are offered by Chari et al. (2009) and Colander
et al. (2008).
To be incorporated in the preface:
Two textbooks that have been a great inspiration for the one in your hands

are Blanchard and Fischer, Lectures in Macroeconomics, 1989, and Malinvaud,
Macroeconomic Theory, vol. A and B, 1998, both of which dig deeper into a
lot of the stuff. Compared with Blanchard and Fischer the present book on the
one hand of course includes some more recent contributions to macroeconomics,
while on ther hand it is more elementary. It is intended to be accessible for third-
year undergraduates with a good background in calculus and first-year graduate
students. Compared with Malinvaud the emphasis in this book is more on formu-
lating complete dynamic models and analyze their applications and implications.
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Chapter 2

Review of technology and firms

The aim of this chapter is threefold. First, we shall introduce this book’s vocabu-
lary concerning firms’technology and technological change. Second, we shall re-
fresh our memory of key notions from microeconomics relating to firms’behavior
and factor market equilibrium under simplifying assumptions, including perfect
competition. Finally, to prepare for the many cases where perfect competition
and other simplifying assumptions are not good approximations to reality, we
give an introduction to firms’behavior under more realistic conditions including
monopolistic competition.
The vocabulary pertaining to other aspects of the economy, for instance house-

holds’preferences and behavior, is better dealt with in close connection with the
specific models to be discussed in the subsequent chapters. Regarding the dis-
tinction between discrete and continuous time analysis, most of the definitions
contained in this chapter are applicable to both.

2.1 The production technology

Consider a two-input-one-output production function given by

Y = F (K,L), (2.1)

where Y is output (value added) per time unit, K is capital input per time unit,
and L is labor input per time unit (K ≥ 0, L ≥ 0). We may think of (2.1)
as describing the output of a firm, a sector, or the economy as a whole. It is
in any case a very simplified description, ignoring the heterogeneity of output,
capital, and labor. Yet, for many macroeconomic questions it may be a useful
first approach.
Note that in (2.1) not only Y but also K and L represent flows, that is,

quantities per unit of time. If the time unit is one year, we think of K as

17



18 CHAPTER 2. REVIEW OF TECHNOLOGY AND FIRMS

measured in machine hours per year. Similarly, we think of L as measured in
labor hours per year. Unless otherwise specified, it is understood that the rate of
utilization of the production factors is constant over time and normalized to one
for each production factor. As explained in Chapter 1, we can then use the same
symbol, K, for the flow of capital services as for the stock of capital. Similarly
with L.

2.1.1 A neoclassical production function

By definition, Y, K and L are non-negative. It is generally understood that a
production function, Y = F (K,L), is continuous and that F (0, 0) = 0 (no input,
no output). Sometimes, when a production function is specified by a certain for-
mula, that formula may not be defined forK = 0 or L = 0 or both. In such a case
we adopt the convention that the domain of the function is understood extended
to include such boundary points whenever it is possible to assign function values
to them such that continuity is maintained. For instance the function F (K,L)
= αL+ βKL/(K +L), where α > 0 and β > 0, is not defined at (K,L) = (0, 0).
But by assigning the function value 0 to the point (0, 0), we maintain both con-
tinuity and the “no input, no output”property, cf. Exercise 2.4.
We call the production function neoclassical if for all (K,L), with K > 0 and

L > 0, the following additional conditions are satisfied:

(a) F (K,L) has continuous first- and second-order partial derivatives satisfying:

FK > 0, FL > 0, (2.2)

FKK < 0, FLL < 0. (2.3)

(b) F (K,L) is strictly quasiconcave (i.e., the level curves, also called isoquants,
are strictly convex to the origin).

In words: (a) says that a neoclassical production function has continuous
substitution possibilities between K and L and the marginal productivities are
positive, but diminishing in own factor. Thus, for a given number of machines,
adding one more unit of labor, adds to output, but less so, the higher is already
the labor input. And (b) says that every isoquant, F (K,L) = Ȳ , has a strictly
convex form qualitatively similar to that shown in Fig. 2.1.1 When we speak
of for example FL as the marginal productivity of labor, it is because the “pure”

1For any fixed Ȳ ≥ 0, the associated isoquant is the level set {(K,L) ∈ R+| F (K,L) = Ȳ
}
.

A refresher on mathematical terms such as level set, boundary point, convex function, etc. is
contained in Math Tools.
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2.1. The production technology 19

partial derivative, ∂Y/∂L = FL, has the denomination of a productivity (out-
put units/yr)/(man-yrs/yr). It is quite common, however, to refer to FL as the
marginal product of labor. Then a unit marginal increase in the labor input is
understood: ∆Y ≈ (∂Y/∂L)∆L = ∂Y/∂L when ∆L = 1. Similarly, FK can
be interpreted as the marginal productivity of capital or as the marginal prod-
uct of capital. In the latter case it is understood that ∆K = 1, so that ∆Y
≈ (∂Y/∂K)∆K = ∂Y/∂K.

The definition of a neoclassical production function can be extended to the
case of n inputs. Let the input quantities be X1, X2, . . . , Xn and consider a
production function Y = F (X1, X2, . . . , Xn). Then F is called neoclassical if all
the marginal productivities are positive, but diminishing in own factor, and F is
strictly quasiconcave (i.e., the upper contour sets are strictly convex, cf. Appendix
A). An example where n = 3 is Y = F (K,L, J), where J is land, an important
production factor in an agricultural economy.
Returning to the two-factor case, since F (K,L) presumably depends on the

level of technical knowledge and this level depends on time, t, we might want to
replace (2.1) by

Yt = F (Kt, Lt, t), (2.4)

where the third argument indicates that the production function may shift over
time, due to changes in technology. We then say that F is a neoclassical produc-
tion function if for all t in a certain time interval it satisfies the conditions (a)
and (b) w.r.t its first two arguments. Technological progress can then be said to
occur when, for Kt and Lt held constant, output increases with t.
For convenience, to begin with we skip the explicit reference to time and level

of technology.

The marginal rate of substitution Given a neoclassical production function
F, we consider the isoquant defined by F (K,L) = Ȳ , where Ȳ is a positive con-
stant. The marginal rate of substitution, MRSKL, of K for L at the point (K,L)
is defined as the absolute slope of the isoquant

{
(K,L) ∈ R2

++

∣∣ F (K,L) = Ȳ
}
at

that point, cf. Fig. 2.1. For some reason (unknown to this author) the tradition
in macroeconomics is to write Y = F (K,L) and in spite of ordering the argu-
ments of F this way, nonetheless have K on the vertical and L on the horizontal
axis when considering an isoquant. At this point we follow the tradition.
The equation F (K,L) = Ȳ defines K as an implicit function K = ϕ(L) of L.

By implicit differentiation we get FK(K,L)dK/dL +FL(K,L) = 0, from which
follows

MRSKL ≡ −
dK

dL |Y=Ȳ
= −ϕ′(L) =

FL(K,L)

FK(K,L)
> 0. (2.5)
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20 CHAPTER 2. REVIEW OF TECHNOLOGY AND FIRMS

So MRSKL equals the ratio of the marginal productivities of labor and capital,
respectively.2 The economic interpretation of MRSKL is that it indicates (ap-
proximately) the amount of K that can be saved by applying an extra unit of
labor.
Since F is neoclassical, by definition F is strictly quasi-concave and so the

marginal rate of substitution is diminishing as substitution proceeds, i.e., as the
labor input is further increased along a given isoquant. Notice that this feature
characterizes the marginal rate of substitution for any neoclassical production
function, whatever the returns to scale (see below).

Figure 2.1: MRSKL as the absolute slope of the isoquant representing F (K,L) = Ȳ .

When we want to draw attention to the dependency of the marginal rate
of substitution on the factor combination considered, we write MRSKL(K,L).
Sometimes in the literature, the marginal rate of substitution between two pro-
duction factors, K and L, is called the technical rate of substitution (or the
technical rate of transformation) in order to distinguish from a consumer’s mar-
ginal rate of substitution between two consumption goods.
As is well-known frommicroeconomics, a firm that minimizes production costs

for a given output level and given factor prices, will choose a factor combination
such thatMRSKL equals the ratio of the factor prices. If F (K,L) is homogeneous
of degree q, then the marginal rate of substitution depends only on the factor
proportion and is thus the same at any point on the ray K = (K̄/L̄)L. In this
case the expansion path is a straight line.

2The subscript
∣∣Y = Ȳ in (2.5) signifies that “we are moving along a given isoquant F (K,L)

= Ȳ ”, i.e., we are considering the relation between K and L under the restriction F (K,L) = Ȳ .
Expressions like FL(K,L) or F2(K,L) mean the partial derivative of F w.r.t. the second
argument, evaluated at the point (K,L).
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2.1. The production technology 21

The Inada conditions A continuously differentiable production function is
said to satisfy the Inada conditions3 if

lim
K→0

FK(K,L) = ∞, lim
K→∞

FK(K,L) = 0, (2.6)

lim
L→0

FL(K,L) = ∞, lim
L→∞

FL(K,L) = 0. (2.7)

In this case, the marginal productivity of either production factor has no upper
bound when the input of the factor becomes infinitely small. And the marginal
productivity is gradually vanishing when the input of the factor increases without
bound. Actually, (2.6) and (2.7) express four conditions, which it is preferable to
consider separately and label one by one. In (2.6) we have two Inada conditions
for MPK (the marginal productivity of capital), the first being a lower, the
second an upper Inada condition for MPK. And in (2.7) we have two Inada
conditions for MPL (the marginal productivity of labor), the first being a lower,
the second an upper Inada condition forMPL. In the literature, when a sentence
like “the Inada conditions are assumed”appears, it is sometimes not made clear
which, and how many, of the four are meant. Unless it is evident from the context,
it is better to be explicit about what is meant.
The definition of a neoclassical production function we have given is quite

common in macroeconomic journal articles and convenient because of its flexibil-
ity. Yet there are textbooks that define a neoclassical production function more
narrowly by including the Inada conditions as a requirement for calling the pro-
duction function neoclassical. In contrast, in this book, when in a given context
we need one or another Inada condition, we state it explicitly as an additional
assumption.

2.1.2 Returns to scale

If all the inputs are multiplied by some factor, is output then multiplied by the
same factor? There may be different answers to this question, depending on
circumstances. We consider a production function F (K,L) where K > 0 and
L > 0. Then F is said to have constant returns to scale (CRS for short) if it is
homogeneous of degree one, i.e., if for all (K,L) ∈ R2

++ and all λ > 0,

F (λK, λL) = λF (K,L).

As all inputs are scaled up or down by some factor, output is scaled up or down
by the same factor.4 The assumption of CRS is often defended by the replication

3After the Japanese economist Ken-Ichi Inada, 1925-2002.
4In their definition of a neoclassical production function some textbooks add constant re-

turns to scale as a requirement besides (a) and (b) above. This book follows the alternative
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22 CHAPTER 2. REVIEW OF TECHNOLOGY AND FIRMS

argument saying that “by doubling all inputs we are always able to double the
output since we are essentially just replicating a viable production activity”.
Before discussing this argument, lets us define the two alternative “pure”cases.
The production function F (K,L) is said to have increasing returns to scale

(IRS for short) if, for all (K,L) ∈ R2
++ and all λ > 1,

F (λK, λL) > λF (K,L).

That is, IRS is present if, when increasing the scale of operations by scaling up
every input by some factor > 1, output is scaled up bymore than this factor. One
argument for the plausibility of this is the presence of equipment indivisibilities
leading to high unit costs at low output levels. Another argument is that gains
by specialization and division of labor, synergy effects, etc. may be present, at
least up to a certain level of production. The IRS assumption is also called the
economies of scale assumption.
Another possibility is decreasing returns to scale (DRS). This is said to occur

when for all (K,L) ∈ R2
++ and all λ > 1,

F (λK, λL) < λF (K,L).

That is, DRS is present if, when all inputs are scaled up by some factor, output
is scaled up by less than this factor. This assumption is also called the disec-
onomies of scale assumption. The underlying hypothesis may be that control and
coordination problems confine the expansion of size. Or, considering the “repli-
cation argument” below, DRS may simply reflect that behind the scene there
is an additional production factor, for example land or a irreplaceable quality
of management, which is tacitly held fixed, when the factors of production are
varied.

EXAMPLE 1 The production function

Y = AKαLβ, A > 0, 0 < α < 1, 0 < β < 1, (2.8)

where A, α, and β are given parameters, is called a Cobb-Douglas production
function. The parameter A depends on the choice of measurement units; for a
given such choice it reflects effi ciency, also called the “total factor productivity”.
Exercise 2.2 asks the reader to verify that (2.8) satisfies (a) and (b) above and
is therefore a neoclassical production function. The function is homogeneous of
degree α + β. If α + β = 1, there are CRS. If α + β < 1, there are DRS, and if

terminology where, if in a given context an assumption of constant returns to scale is needed,
this is stated as an additional assumption and we talk about a CRS-neoclassical production
function.
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2.1. The production technology 23

α+ β > 1, there are IRS. Note that α and β must be less than 1 in order not to
violate the diminishing marginal productivity condition. �
EXAMPLE 2 The production function

Y = A
[
αKβ + (1− α)Lβ

] 1
β , (2.9)

where A, α, and β are parameters satisfying A > 0, 0 < α < 1, and β < 1, β 6= 0,
is called a CES production function (CES for Constant Elasticity of Substitution).
For a given choice of measurement units, the parameter A reflects effi ciency (or
“total factor productivity”) and is thus called the effi ciency parameter. The
parameters α and β are called the distribution parameter and the substitution
parameter, respectively. The latter name comes from the property that the higher
is β, the more sensitive is the cost-minimizing capital-labor ratio to a rise in
the relative factor price. Equation (2.9) gives the CES function for the case of
constant returns to scale; the cases of increasing or decreasing returns to scale
are presented in Chapter 4.5. A limiting case of the CES function (2.9) gives the
Cobb-Douglas function with CRS. Indeed, for fixed K and L,

lim
β→0

A
[
αKβ + (1− α)Lβ

] 1
β = AKαL1−α.

This and other properties of the CES function are shown in Chapter 4.5. The
CES function has been used intensively in empirical studies. �
EXAMPLE 3 The production function

Y = min(AK,BL), A > 0, B > 0, (2.10)

where A and B are given parameters, is called a Leontief production function5

(or a fixed-coeffi cients production function; A and B are called the technical coef-
ficients. The function is not neoclassical, since the conditions (a) and (b) are not
satisfied. Indeed, with this production function the production factors are not
substitutable at all. This case is also known as the case of perfect complementarity
between the production factors. The interpretation is that already installed pro-
duction equipment requires a fixed number of workers to operate it. The inverse
of the parameters A and B indicate the required capital input per unit of output
and the required labor input per unit of output, respectively. Extended to many
inputs, this type of production function is often used in multi-sector input-output
models (also called Leontief models). In aggregate analysis neoclassical produc-
tion functions, allowing substitution between capital and labor, are more popular

5After the Russian-American economist and Nobel laureate Wassily Leontief (1906-99) who
used a generalized version of this type of production function in what is known as input-output
analysis.
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24 CHAPTER 2. REVIEW OF TECHNOLOGY AND FIRMS

than Leontief functions. But sometimes the latter are preferred, in particular in
short-run analysis with focus on the use of already installed equipment where the
substitution possibilities tend to be limited.6 As (2.10) reads, the function has
CRS. A generalized form of the Leontief function is Y = min(AKγ, BLγ), where
γ > 0. When γ < 1, there are DRS, and when γ > 1, there are IRS. �

The replication argument The assumption of CRS is widely used in macro-
economics. The model builder may appeal to the replication argument. This is
the argument saying that by doubling all the inputs, we should always be able
to double the output, since we are just “replicating”what we are already doing.
Suppose we want to double the production of cars. We may then build another
factory identical to the one we already have, man it with identical workers and
deploy the same material inputs. Then it is reasonable to assume output is dou-
bled.
In this context it is important that the CRS assumption is about technology in

the sense of functions linking outputs to inputs. Limits to the availability of input
resources is an entirely different matter. The fact that for example managerial
talent may be in limited supply does not preclude the thought experiment that
if a firm could double all its inputs, including the number of talented managers,
then the output level could also be doubled.
The replication argument presupposes, first, that all the relevant inputs are

explicit as arguments in the production function; second, that these are changed
equiproportionately. This, however, exhibits the weakness of the replication argu-
ment as a defence for assuming CRS of our present production function, F. One
could easily make the case that besides capital and labor, also land is a necessary
input and should appear as a separate argument.7 If an industrial firm decides
to duplicate what it has been doing, it needs a piece of land to build another
plant like the first. Then, on the basis of the replication argument, we should in
fact expect DRS w.r.t. capital and labor alone. In manufacturing and services,
empirically, this and other possible sources for departure from CRS w.r.t. capital
and labor may be minor and so many macroeconomists feel comfortable enough
with assuming CRS w.r.t. K and L alone, at least as a first approximation.
This approximation is, however, less applicable to poor countries, where natural
resources may be a quantitatively important production factor.
There is a further problem with the replication argument. By definition, CRS

is present if and only if, by changing all the inputs equiproportionately by any
positive factor λ (not necessarily an integer), the firm is able to get output changed

6Cf. Section 2.5.2.
7Recall from Chapter 1 that we think of “capital”as producible means of production, whereas

“land”refers to non-producible natural resources, including for instance building sites.
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2.1. The production technology 25

by the same factor. Hence, the replication argument requires that indivisibilities
are negligible, which is certainly not always the case. In fact, the replication
argument is more an argument against DRS than for CRS in particular. The
argument does not rule out IRS due to synergy effects as scale is increased.
Sometimes the replication line of reasoning is given a more subtle form. This

builds on a useful local measure of returns to scale, named the elasticity of scale.

The elasticity of scale*8 To allow for indivisibilities and mixed cases (for
example IRS at low levels of production and CRS or DRS at higher levels), we
need a local measure of returns to scale. One defines the elasticity of scale,
η(K,L), of F at the point (K,L), where F (K,L) > 0, as

η(K,L) =
λ

F (K,L)

dF (λK, λL)

dλ
≈ ∆F (λK, λL)/F (K,L)

∆λ/λ
, evaluated at λ = 1.

(2.11)
So the elasticity of scale at a point (K,L) indicates the (approximate) percentage
increase in output when both inputs are increased by 1 percent. We say that

if η(K,L)


> 1, then there are locally IRS,
= 1, then there are locally CRS,
< 1, then there are locally DRS.

(2.12)

The production function may have the same elasticity of scale everywhere. This
is the case if and only if the production function is homogeneous of some degree
h > 0. In that case η(K,L) = h for all (K,L) for which F (K,L) > 0, and h
indicates the global elasticity of scale. The Cobb-Douglas function, cf. Example
1, is homogeneous of degree α+β and has thereby global elasticity of scale equal
to α + β.
Note that the elasticity of scale at a point (K,L) will always equal the sum

of the partial output elasticities at that point:

η(K,L) =
FK(K,L)K

F (K,L)
+
FL(K,L)L

F (K,L)
. (2.13)

This follows from the definition in (2.11) by taking into account that

dF (λK, λL)

dλ
= FK(λK, λL)K + FL(λK, λL)L

= FK(K,L)K + FL(K,L)L, when evaluated at λ = 1.

8A section headline marked by * indicates that in a first reading the section can be skipped
- or at least just skimmed through.
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Fig. 2.2 illustrates a popular case from introductory economics, an average
cost curve which from the perspective of the individual firm is U-shaped: at low
levels of output there are falling average costs (thus IRS), at higher levels rising
average costs (thus DRS).9 Given the input prices wK and wL and a specified
output level F (K,L) = Ȳ , we know that the cost-minimizing factor combination
(K̄, L̄) is such that FL(K̄, L̄)/FK(K̄, L̄) = wL/wK . It is shown in Appendix A
that the elasticity of scale at (K̄, L̄) will satisfy:

η(K̄, L̄) =
LAC(Ȳ )

LMC(Ȳ )
, (2.14)

where LAC(Ȳ ) is average costs (the minimum unit cost associated with producing
Ȳ ) and LMC(Ȳ ) is marginal costs at the output level Ȳ . The L in LAC and
LMC stands for “long-run”, indicating that both capital and labor are considered
variable production factors within the period considered. At the optimal plant
size, Y ∗, there is equality between LAC and LMC, implying a unit elasticity
of scale. That is, locally we have CRS. That the long-run average costs are
here portrayed as rising for Ȳ > Y ∗, is not essential for the argument but may
reflect either that coordination diffi culties are inevitable or that some additional
production factor, say the building site of the plant, is tacitly held fixed.

Figure 2.2: Locally CRS at optimal plant size.

Anyway, on this basis Robert Solow (1956) came up with a more subtle repli-
cation argument for CRS at the aggregate level. Even though technologies may
differ across plants, the surviving plants in a competitive market will have the
same average costs at the optimal plant size. In the medium and long run, changes
in aggregate output will take place primarily by entry and exit of optimal-size

9By a “firm” is generally meant the company as a whole. A company may have several
“manufacturing plants”placed at different locations.
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plants. Then, with a large number of relatively small plants, each producing at
approximately constant unit costs for small output variations, we can without
substantial error assume constant returns to scale at the aggregate level. So the
argument goes. Notice, however, that even in this form the replication argument
is not entirely convincing since the question of indivisibility remains. The opti-
mal, i.e., cost-minimizing, plant size may be large relative to the market − and
is in fact so in many industries. Besides, in this case also the perfect competition
premise breaks down.

2.1.3 Properties of the production function under CRS

The empirical evidence concerning returns to scale is mixed (see the literature
notes at the end of the chapter). Notwithstanding the theoretical and empirical
ambiguities, the assumption of CRS w.r.t. capital and labor has a prominent
role in macroeconomics. In many contexts it is regarded as an acceptable ap-
proximation and a convenient simple background for studying the question at
hand.
Expedient inferences of the CRS assumption include:

(i) marginal costs are constant and equal to average costs (so the right-hand
side of (2.14) equals unity);

(ii) if production factors are paid according to their marginal productivities,
factor payments exactly exhaust total output so that pure profits are neither
positive nor negative (so the right-hand side of (2.13) equals unity);

(iii) a production function known to exhibit CRS and satisfy property (a) from
the definition of a neoclassical production function above, will automatically
satisfy also property (b) and consequently be neoclassical;

(iv) a neoclassical two-factor production function with CRS has always FKL > 0,
i.e., it exhibits “direct complementarity”between K and L;

(v) a two-factor production function that has CRS and is twice continuously
differentiable with positive marginal productivity of each factor everywhere
in such a way that all isoquants are strictly convex to the origin, must
have diminishing marginal productivities everywhere and thereby be neo-
classical.10

A principal implication of the CRS assumption is that it allows a reduction
of dimensionality. Considering a neoclassical production function, Y = F (K,L)

10Proof of claim (iii) is in Appendix A and proofs of claim (iv) and (v) are in Appendix B.
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with L > 0, we can under CRS write F (K,L) = LF (K/L, 1) ≡ Lf(k), where
k ≡ K/L is called the capital-labor ratio (sometimes the capital intensity) and
f(k) is the production function in intensive form (sometimes named the per capita
production function). Thus output per unit of labor depends only on the capital
intensity:

y ≡ Y

L
= f(k).

When the original production function F is neoclassical, under CRS the expres-
sion for the marginal productivity of capital simplifies:

FK(K,L) =
∂Y

∂K
=
∂ [Lf(k)]

∂K
= Lf ′(k)

∂k

∂K
= f ′(k). (2.15)

And the marginal productivity of labor can be written

FL(K,L) =
∂Y

∂L
=
∂ [Lf(k)]

∂L
= f(k) + Lf ′(k)

∂k

∂L
= f(k) + Lf ′(k)K(−L−2) = f(k)− f ′(k)k. (2.16)

A neoclassical CRS production function in intensive form always has a positive
first derivative and a negative second derivative, i.e., f ′ > 0 and f ′′ < 0. The
property f ′ > 0 follows from (2.15) and (2.2). And the property f ′′ < 0 follows
from (2.3) combined with

FKK(K,L) =
∂f ′(k)

∂K
= f ′′(k)

∂k

∂K
= f ′′(k)

1

L
.

For a neoclassical production function with CRS, we also have

f(k)− f ′(k)k > 0 for all k > 0, (2.17)

in view of f(0) ≥ 0 and f ′′ < 0. Moreover,

lim
k→0

[f(k)− f ′(k)k] = f(0). (2.18)

Indeed, from the mean value theorem11 we know there exists a number a ∈ (0, 1)
such that for any k > 0 we have f(k)− f(0) = f ′(ak)k. From this follows f(k)−
f ′(ak)k = f(0) < f(k) − f ′(k)k, since f ′(ak) > f ′(k) by f ′′ < 0. In view of
f(0) ≥ 0, this establishes (2.17). And from f(k) > f(k) − f ′(k)k > f(0) and
continuity of f follows (2.18).

11This theorem says that if f is continuous in [α, β] and differentiable in (α, β), then there
exists at least one point γ in (α, β) such that f ′(γ) = (f(β)− f(α))/(β − α).
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Under CRS the Inada conditions for MPK can be written

lim
k→0

f ′(k) =∞, lim
k→∞

f ′(k) = 0. (2.19)

In this case standard parlance is just to say that “f satisfies the Inada conditions”.
An input which must be positive for positive output to arise is called an

essential input ; an input which is not essential is called an inessential input. The
second part of (2.19), representing the upper Inada condition for MPK under
CRS, has the implication that labor is an essential input; but capital need not
be, as the production function f(k) = a + bk/(1 + k), a > 0, b > 0, illustrates.
Similarly, under CRS the upper Inada condition for MPL implies that capital
is an essential input. These claims are proved in Appendix C. Combining these
results, when both the upper Inada conditions hold and CRS obtain, then both
capital and labor are essential inputs.12

Fig. 2.3 is drawn to provide an intuitive understanding of a neoclassical
CRS production function and at the same time illustrate that the lower Inada
conditions are more questionable than the upper Inada conditions. The left panel
of Fig. 2.3 shows output per unit of labor for a CRS neoclassical production
function satisfying the Inada conditions for MPK. The f(k) in the diagram
could for instance represent the Cobb-Douglas function in Example 1 with β =
1 − α, i.e., f(k) = Akα. The right panel of Fig. 2.3 shows a non-neoclassical
case where only two alternative Leontief techniques are available, technique 1: y
= min(A1k,B1), and technique 2: y = min(A2k,B2). In the exposed case it is
assumed that B2 > B1 and A2 < A1 (if A2 ≥ A1 at the same time as B2 > B1,
technique 1 would not be effi cient, because the same output could be obtained
with less input of at least one of the factors by shifting to technique 2). If the
available K and L are such that k ≡ K/L < B1/A1 or k > B2/A2, some of either
L or K, respectively, is idle. If, however, the available K and L are such that
B1/A1 < k < B2/A2, it is effi cient to combine the two techniques and use the
fraction µ of K and L in technique 1 and the remainder in technique 2, where
µ = (B2/A2 − k)/(B2/A2 − B1/A1). In this way we get the “labor productivity
curve”OPQR (the envelope of the two techniques) in Fig. 2.3. Note that for
k → 0, MPK stays equal to A1 <∞, whereas for all k > B2/A2, MPK = 0.
A similar feature remains true, when we consider many, say n, alternative

effi cient Leontief techniques available. Assuming these techniques cover a con-
siderable range w.r.t. the B/A ratios, we get a labor productivity curve looking
more like that of a neoclassical CRS production function. On the one hand, this
gives some intuition of what lies behind the assumption of a neoclassical CRS
production function. On the other hand, it remains true that for all k > Bn/An,

12Given a Cobb-Douglas production function, both production factors are essential whether
we have DRS, CRS, or IRS.
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Figure 2.3: Two labor productivity curves based on CRS technologies. Left: neoclas-
sical technology with Inada conditions for MPK satisfied; the graphical representation
of MPK and MPL at k = k0 as f ′(k0) and f(k0) − f ′(k0)k0 are indicated. Right: the
line segment PQ makes up an effi cient combination of two effi cient Leontief techniques.

MPK = 0,13 whereas for k → 0, MPK stays equal to A1 <∞, thus questioning
the lower Inada condition.
The implausibility of the lower Inada conditions is also underlined if we look

at their implication in combination with the more reasonable upper Inada condi-
tions. Indeed, the four Inada conditions taken together imply, under CRS, that
output has no upper bound when either input goes towards infinity for fixed
amount of the other input (see Appendix C).

2.2 Technological change

When considering the movement over time of the economy, we shall often take
into account the existence of technological change. When technological change
occurs, the production function becomes time-dependent. Over time the produc-
tion factors tend to become more productive: more output for given inputs. To
put it differently: the isoquants move inward. When this is the case, we say that
the technological change displays technological progress.

Concepts of neutral technological change

A first step in taking technological change into account is to replace (2.1) by
(2.4). Empirical studies often specialize (2.4) by assuming that technological
change take a form known as factor-augmenting technological change:

Yt = F (AtKt, BtLt), (2.20)

13Here we assume the techniques are numbered according to ranking with respect to the size
of B.
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where F is a (time-independent) neoclassical production function, Yt, Kt, and
Lt are output, capital, and labor input, respectively, at time t, while At and
Bt are time-dependent “effi ciencies”of capital and labor, respectively, reflecting
technological change.
In macroeconomics an even more specific form is often assumed, namely the

form of Harrod-neutral technological change.14 This amounts to assuming that At
in (2.20) is a constant (which we can then normalize to one). So only Bt, which
is then conveniently denoted Tt, is changing over time, and we have

Yt = F (Kt, TtLt). (2.21)

The effi ciency of labor, Tt, is then said to indicate the technology level. Although
one can imagine natural disasters implying a fall in Tt, generally Tt tends to rise
over time and then we say that (2.21) represents Harrod-neutral technological
progress. An alternative name often used for this is labor-augmenting technolog-
ical progress. The names “factor-augmenting”and, as here, “labor-augmenting”
have become standard and we shall use them when convenient, although they
may easily be misunderstood. To say that a change in Tt is labor-augmenting
might be understood as meaning that more labor is required to reach a given
output level for given capital. In fact, the opposite is the case, namely that Tt
has risen so that less labor input is required. The idea is that the technological
change affects the output level as if the labor input had been increased exactly
by the factor by which T was increased, and nothing else had happened. (We
might be tempted to say that (2.21) reflects “labor saving”technological change.
But also this can be misunderstood. Indeed, keeping L unchanged in response to
a rise in T implies that the same output level requires less capital and thus the
technological change is “capital saving”.)
If the function F in (2.21) is homogeneous of degree one (so that the technol-

ogy exhibits CRS w.r.t. capital and labor), we may write

ỹt ≡
Yt
TtLt

= F (
Kt

TtLt
, 1) = F (k̃t, 1) ≡ f(k̃t), f ′ > 0, f ′′ < 0.

where k̃t ≡ Kt/(TtLt) ≡ kt/Tt (habitually called the “effective”capital intensity
or, if there is no risk of confusion, just the capital intensity). In rough accordance
with a general trend in aggregate productivity data for industrialized countries
we often assume that T grows at a constant rate, g, so that in discrete time Tt
= T0(1 + g)t and in continuous time Tt = T0e

gt, where g > 0. The popularity
in macroeconomics of the hypothesis of labor-augmenting technological progress
derives from its consistency with Kaldor’s “stylized facts”, cf. Chapter 4.

14After the English economist Roy F. Harrod, 1900-1978.
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There exists two alternative concepts of neutral technological progress. Hicks-
neutral technological progress is said to occur if technological development is such
that the production function can be written in the form

Yt = TtF (Kt, Lt), (2.22)

where, again, F is a (time-independent) neoclassical production function, while
Tt is the growing technology level.15 The assumption of Hicks-neutrality has been
used more in microeconomics and partial equilibrium analysis than in macroeco-
nomics. If F has CRS, we can write (2.22) as Yt = F (TtKt, TtLt). Comparing
with (2.20), we see that in this case Hicks-neutrality is equivalent to At = Bt in
(2.20), whereby technological change is said to be equally factor-augmenting.
Finally, in a symmetric analogy with (2.21), what is known as capital-augmenting

technological progress is present when

Yt = F (TtKt, Lt). (2.23)

Here technological change acts as if the capital input were augmented. For some
reason this form is sometimes called Solow-neutral technological progress.16 This
association of (2.23) to Solow’s name is misleading, however. In his famous growth
model,17 Solow assumed Harrod-neutral technological progress. And in another
famous contribution, Solow generalized the concept of Harod-neutrality to the
case of embodied technological change and capital of different vintages, see below.
It is easily shown (Exercise 2.5) that the Cobb-Douglas production function

(2.8) (with time-independent output elasticities w.r.t. K and L) satisfies all three
neutrality criteria at the same time, if it satisfies one of them (which it does if
technological change does not affect α and β). It can also be shown that within
the class of neoclassical CRS production functions the Cobb-Douglas function is
the only one with this property (see Exercise 4.??).
Note that the neutrality concepts do not say anything about the source of

technological progress, only about the quantitative form in which it materializes.
For instance, the occurrence of Harrod-neutrality should not be interpreted as
indicating that the technological change emanates specifically from the labor
input in some sense. Harrod-neutrality only means that technological innovations
predominantly are such that not only do labor and capital in combination become
more productive, but this happens to manifest itself in the form (2.21), that is,
as if an improvement in the quality of the labor input had occurred. (Even when
improvement in the quality of the labor input is on the agenda, the result may be
a reorganization of the production process ending up in a higher Bt along with,
or instead of, a higher At in the expression (2.20).)
15After the English economist and Nobel Prize laureate John R. Hicks, 1904-1989.
16After the American economist and Nobel Prize laureate Robert Solow (1924-).
17Solow (1956).
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Rival versus nonrival goods

When a production function (or more generally a production possibility set) is
specified, a given level of technical knowledge is presumed. As this level changes
over time, the production function changes. In (2.4) this dependency on the level
of knowledge was represented indirectly by the time dependency of the production
function. Sometimes it is useful to let the knowledge dependency be explicit by
perceiving knowledge as an additional production factor and write, for instance,

Yt = F (Xt, Tt), (2.24)

where Tt is now an index of the amount of knowledge, while Xt is a vector
of ordinary inputs like raw materials, machines, labor etc. In this context the
distinction between rival and nonrival inputs or more generally the distinction
between rival and nonrival goods is important. A good is rival if its character is
such that one agent’s use of it inhibits other agents’use of it at the same time.
A pencil is thus rival. Many production inputs like raw materials, machines,
labor etc. have this property. They are elements of the vector Xt. By contrast,
however, technical knowledge is a nonrival good. An arbitrary number of factories
can simultaneously use the same piece of technical knowledge in the sense of a list
of instructions about how different inputs can be combined to produce a certain
output. An engineering principle or a farmaceutical formula are examples. (Note
that the distinction rival-nonrival is different from the distinction excludable-
nonexcludable. A good is excludable if other agents, firms or households, can be
excluded from using it. Other firms can thus be excluded from commercial use of
a certain piece of technical knowledge if it is patented. The existence of a patent
concerns the legal status of a piece of knowledge and does not interfere with its
economic character as a nonrival input.).
What the replication argument really says is that by, conceptually, doubling

all the rival inputs, we should always be able to double the output, since we
just “replicate” what we are already doing. This is then an argument for (at
least) CRS w.r.t. the elements of Xt in (2.24). The point is that because of its
nonrivalry, we do not need to increase the stock of knowledge. Now let us imagine
that the stock of knowledge is doubled at the same time as the rival inputs are
doubled. Then more than a doubling of output should occur. In this sense we
may speak of IRS w.r.t. the rival inputs and T taken together.

The perpetual inventory method

Before proceeding, a brief remark about how the capital stockKt can be measured
While data on gross investment, It, is typically available in offi cial national income
and product accounts, data on Kt usually is not. It has been up to researchers
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and research institutions to make their own time-series for capital. One approach
to the measurement of Kt is the perpetual inventory method which builds upon
the accounting relationship

Kt = It−1 + (1− δ)Kt−1. (2.25)

Assuming a constant capital depreciation rate δ, backward substitution gives

Kt = It−1 + (1− δ) [It−2 + (1− δ)Kt−2] = . . . =
N∑
i=1

(1− δ)i−1It−i + (1− δ)TKt−N .

(2.26)
Based on a long time series for I and an estimate of δ, one can insert these
observed values in the formula and calculate Kt, starting from a rough conjec-
ture about the initial value Kt−N . The result will not be very sensitive to this
conjecture since for large N the last term in (2.26) becomes very small.

Embodied vs. disembodied technological progress*

An additional taxonomy of technological change is the following. We say that
technological change is embodied, if taking advantage of new technical knowledge
requires construction of new investment goods. The new technology is incorpo-
rated in the design of newly produced equipment, but this equipment will not
participate in subsequent technological progress. An example: only the most
recent vintage of a computer series incorporates the most recent advance in in-
formation technology. Then investment goods produced later (investment goods
of a later “vintage”) have higher productivity than investment goods produced
earlier at the same resource cost. Thus investment becomes an important driving
force in productivity increases.
We may formalize embodied technological progress by writing capital accu-

mulation in the following way:

Kt+1 −Kt = QtIt − δKt, (2.27)

where It is gross investment in period t, i.e., It = Yt − Ct, and Qt measures the
“quality” (productivity) of newly produced investment goods. The rising level
of technology implies rising Q so that a given level of investment gives rise to
a greater and greater addition to the capital stock, K, measured in effi ciency
units. In aggregate models C and I are produced with the same technology, the
aggregate production function. From this together with (2.27) follows that Q
capital goods can be produced at the same minimum cost as one consumption
good. Hence, the equilibrium price, p, of capital goods in terms of the consump-
tion good must equal the inverse of Q, i.e., p = 1/Q. The output-capital ratio in
value terms is Y/(pK) = QY/K.
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Note that even if technological change does not directly appear in the produc-
tion function, that is, even if for instance (2.21) is replaced by Yt = F (Kt, Lt),
the economy may experience a rising standard of living when Q is growing over
time.
In contrast, disembodied technological change occurs when new technical and

organizational knowledge increases the combined productivity of the production
factors independently of when they were constructed or educated. If the Kt

appearing in (2.21), (2.22), and (2.23) above refers to the total, historically ac-
cumulated capital stock as calculated by (2.26), then the evolution of T in these
expressions can be seen as representing disembodied technological change. All
vintages of the capital equipment benefit from a rise in the technology level Tt.
No new investment is needed to benefit.
Based on data for the U.S. 1950-1990, and taking quality improvements into

account, Greenwood et al. (1997) estimate that embodied technological progress
explains about 60% of the growth in output per man hour. So, empirically,
embodied technological progress seems to play a dominant role. As this tends not
to be fully incorporated in national income accounting at fixed prices, there is
a need to adjust the investment levels in (2.26) to better take estimated quality
improvements into account. Otherwise the resulting K will not indicate the
capital stock measured in effi ciency units.
For most issues dealt with in this book the distinction between embodied and

disembodied technological progress is not very important. Hence, unless explicitly
specified otherwise, technological change is understood to be disembodied.

2.3 The concepts of a representative firm and
an aggregate production function

Many macroeconomic models make use of the simplifying notion of a represen-
tative firm. By this is meant a fictional firm whose production “represents”
aggregate production (value added) in a sector or in society as a whole.
Suppose there are n firms in the sector considered or in society as a whole.

Let F i be the production function for firm i so that Yi = F i(Ki, Li), where Yi,
Ki, and Li are output, capital input, and labor input, respectively, i = 1, 2, . . . , n.
Further, let Y = Σn

i=1Yi, K = Σn
i=1Ki, and L = Σn

i=1Li. Ignoring technological
change, suppose the aggregate variables are related through some function, F ∗,
such that we can write

Y = F ∗(K,L),

and such that the choices of a single firm facing this production function coincide
with the aggregate outcomes, Σn

i=1Yi, Σn
i=1Ki, and Σn

i=1Li, in the original econ-
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omy. Then F ∗(K,L) is called the aggregate production function or the production
function of the representative firm. It is as if aggregate production is the result
of the behavior of such a single firm.
A simple example where the aggregate production function is well-defined is

the following. Suppose that all firms have the same production function so that
Yi = F (Ki, Li), i = 1, 2, . . . , n. If in addition F has CRS, we have

Yi = F (Ki, Li) = LiF (ki, 1) ≡ Lif(ki),

where ki ≡ Ki/Li. Hence, facing given factor prices, cost-minimizing firms will
choose the same capital intensity ki = k for all i. From Ki = kLi then follows∑

iKi = k
∑

i Li so that k = K/L. Thence,

Y ≡
∑

Yi =
∑

Lif(ki) = f(k)
∑

Li = f(k)L = F (k, 1)L = F (K,L).

In this (trivial) case the aggregate production function is well-defined and turns
out to be exactly the same as the identical CRS production functions of the
individual firms. Moreover, given CRS and ki = k for all i, we have ∂Yi/∂Ki

= f ′(ki) = f ′(k) = FK(K,L) for all i. So each firm’s marginal productivity of
capital is the same as the marginal productivity of capital on the basis of the
aggregate production function.
Allowing for the existence of different production functions at firm level, we

may define the aggregate production function as

F (K,L) = max
(K1,L1,...,Kn,Ln)≥0

F 1(K1, L1) + · · ·+ F n(Kn, Ln)

s.t.
∑
i

Ki ≤ K,
∑
i

Li ≤ L.

Here it is no longer generally true that ∂Yi/∂Ki (= F i
K(Ki, Li) = ∂Y/∂K (=

FK(K,L).
A next step is to allow also for the existence of different output goods, dif-

ferent capital goods, and different types of labor. This makes the issue even
more intricate, of course. Yet, if firms are price taking profit maximizers and
face nonincreasing returns to scale, we at least know from microeconomics that
the aggregate outcome is as if, for given prices, the firms jointly maximize aggre-
gate profit on the basis of their combined production technology. The problem
is, however, that the conditions needed for this to imply existence of an aggre-
gate production function which is well-behaved (in the sense of inheriting simple
qualitative properties from its constituent parts) are restrictive.
Nevertheless macroeconomics often treats aggregate output as a single homo-

geneous good and capital and labor as being two single and homogeneous inputs.
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There was in the 1960s a heated debate about the problems involved in this,
with particular emphasis on the aggregation of different kinds of equipment into
one variable, the capital stock “K”. The debate is known as the “Cambridge
controversy”because the dispute was between a group of economists from Cam-
bridge University, UK, and a group from Massachusetts Institute of Technology
(MIT), which is located in Cambridge, USA. The former group questioned the
theoretical robustness of several of the neoclassical tenets, including the propo-
sition that a higher aggregate capital intensity is induced by a lower rate of
interest. Starting at the disaggregate level, an association of this sort is not a
logical necessity because, with different production functions across the indus-
tries, the relative prices of produced inputs tend to change, when the interest
rate changes. While acknowledging the possibility of “paradoxical”relationships,
the MIT group maintained that in a macroeconomic context they are likely to
cause devastating problems only under exceptional circumstances. In the end this
is a matter of empirical assessment.18

To avoid complexity and because, for many important issues in macroeco-
nomics, there is today no well-tried alternative, this book is about models that
use aggregate constructs like “Y ”, “K”, and “L”as simplifying devices, assum-
ing they are, for a broad class of cases, acceptable in a first approximation. Of
course there are cases where some disaggregation is pertinent. When for example
the role of imperfect competition is in focus, we shall be ready to (modestly)
disaggregate the production side of the economy into several product lines, each
producing its own differentiated product (cf. Section 2.5.3).
Like the representative firm, the representative household and the aggregate

consumption function are simplifying notions that should be applied only when
they do not get in the way of the issue to be studied. The role of budget con-
straints may make it even more diffi cult to aggregate over households than over
firms. Yet, if (and that is a big if) all households have the same constant propen-
sity to consume out of income or wealth, aggregation is straightforward and the
representative household is a meaningful simplifying concept. On the other hand,
if we aim at understanding, say, the interaction between lending and borrowing
households, perhaps via financial intermediaries, the representative household is
not a useful starting point. Similarly, if the theme is conflicts of interests between
firm owners and employees, the existence of different types of households should
be taken into account. Or if we want to assess the welfare costs of business cycle
fluctuations, we have to take heterogeneity into account in view of the fact that
exposure to unemployment risk tends to be very unevenly distributed.

18In his review of the Cambridge controversy Mas-Colell (1989) concluded that: “What the
‘paradoxical’comparative statics [of disaggregate capital theory] has taught us is simply that
modelling the world as having a single capital good is not a priori justified. So be it.”
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2.4 The neoclassical competitive one-sector setup

Many long-run macromodels, including those in the first chapters to follow, share
the same abstract setup regarding the firms and the market environment in which
they are placed. We give an account here which will serve as a reference point
for these later chapters.
The setup is characterized by the following simplifications:

(a) There is only one produced good, an all-purpose good that can be used for
consumption as well as investment. Physical capital is just the accumulated
amount of what is left of the produced good after consumption. Models
using this simplification are called one-sector models. One may think of
“corn”, a good that can be used for consumption as well as investment in
the form of seed to yield corn next period.

(b) A representative firm maximizes profit subject to a neoclassical production
function under non-increasing returns to scale.

(c) Capital goods become productive immediately upon purchase or renting (so
installation costs and similar features are ignored).

(d) In all markets perfect competition rules and so the economic actors are price
takers, perceiving no constraint on how much they can sell or buy at the
going market price. It is understood that market prices are flexible and
adjust quickly to levels required for market clearing.

(e) Factor supplies are inelastic.

(f) There is no uncertainty. When a choice of action is made, the consequences
are known.

We call such a setup the neoclassical competitive one-sector setup. In many
respects it is an abstraction. Nevertheless, the outcome under these conditions is
of theoretical interest. Think of Galilei’s discovery that a falling body falls with
a uniform acceleration as long as it is falling through a perfect vacuum.

2.4.1 Profit maximization

We consider a single period. Let the representative firm have the neoclassical
production function

Y = F (K,L), (2.28)
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where technological change is ignored. Although in this book often CRS will be
assumed, we may throw the CRS outcome in relief by starting with a broader
view.
From microeconomics we know that equilibrium with perfect competition is

compatible with producers operating under the condition of locally nonincreasing
returns to scale (cf. Fig. 2.2). In standard macroeconomics it is common to
accept a lower level of generality and simply assume that F is a concave function.
This allows us to carry out the analysis as if there were non-increasing returns
to scale everywhere (see Appendix D).19

Since F is neoclassical, we have FKK < 0 and FLL < 0 everywhere. To
guarantee concavity it is then necessary and suffi cient to add the assumption
that

D ≡ FKK(K,L)FLL(K,L)− FKL(K,L)2 ≥ 0, (2.29)

holds for all (K,L). This is a simple application of a general theorem on concave
functions (see Math Tools).
We consider both K and L as variable production factors. Let the factor

prices be denoted wK and wL, respectively. For the time being we assume the
firm rents the machines it uses; then the price, wK , of capital services is called
the rental price or the rental rate. As numeraire (unit of account) we apply the
output good. So all prices are measured in terms of the output good which itself
has the price 1. Then profit, defined as revenue minus costs, is

Π = F (K,L)− wKK − wLL. (2.30)

We assume both production inputs are variable inputs. Taking the factor prices
as given from the factor markets, the firm’s problem is to choose (K,L), where
K ≥ 0 and L ≥ 0, so as to maximize Π. An interior solution will satisfy the
first-order conditions

∂Π

∂K
= FK(K,L)− wK = 0 or FK(K,L) = wK , (2.31)

∂Π

∂L
= FL(K,L)− wL = 0 or FL(K,L) = wL. (2.32)

Since F is concave, so is the profit function. The first-order conditions are then
suffi cient for (K,L) to be a solution.
It is now convenient to proceed by considering the two cases, DRS and CRS,

separately.

19By definition, concavity means that by applying a weighted average of two factor combina-
tions, (K1, L1) and (K2, L2), the obtained output is at least as large as the weighted average
of the original outputs, Y1 and Y2. So, if 0 < λ < 1 and (K,L) = λ(K1, L1) +(1− λ)(K2, L2),
then F (K,L) ≥ λF (K1, L1) +(1− λ)F (K2, L2).
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The DRS case

Suppose the production function satisfies (2.29) with strict inequality everywhere,
i.e.,

D > 0.

In combination with the neoclassical property of diminishing marginal productiv-
ities, this implies that F is strictly concave which in turn implies DRS everywhere.
The factor demands will now be unique. Indeed, the equations (2.31) and (2.32)
define the factor demands Kd and Ld (“d”for demand) as implicit functions of
the factor prices:

Kd = K(wK , wL), Ld = L(wK , wL).

An easy way to find the partial derivatives of these functions is to first take the
differential20 of both sides of (2.31) and (2.32), respectively:

FKKdK
d + FKLdL

d = dwK ,

FLKdK
d + FLLdL

d = dwL.

Then we interpret these conditions as a system of two linear equations with two
unknowns, the variables dKd and dLd. The determinant of the coeffi cient matrix
equals D in (2.29) and is in this case positive everywhere. Using Cramer’s rule
(see Math Tools), we find

dKd =
FLLdwK − FKLdwL

D
,

dLd =
FKKdwL − FLKdwK

D
,

so that

∂Kd

∂wK
=

FLL
D

< 0,
∂Kd

∂wL
= −FKL

D
< 0 if FKL > 0, (2.33)

∂Ld

∂wK
= −FKL

D
< 0 if FKL > 0,

∂Ld

∂wL
=
FKK
D

< 0, (2.34)

20The differential of a differentiable function is a convenient tool for deriving results like
(2.33) and (2.34). For a function of one variable, y = f(x), the differential is denoted dy (or df)
and is defined as f ′(x)dx, where dx is some arbitrary real number (interpreted as the change in
x). For a differentiable function of two variables, z = g(x, y) , the differential of the function is
denoted dz (or dg) and is defined as dz = gx(x, y)dx +gy(x, y)dy, where dx and dy are arbitrary
real numbers.
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in view of FLK = FKL.
21

In contrast to the cases of CRS and IRS, here we cannot be sure that direct
complementarity (FKL > 0) holds everywhere. In any event, the rule for both
factors is that when a factor price increases, the demand for the factor in question
decreases and under direct complementarity also the demand for the other factor
will decrease. Although there is a substitution effect towards higher demand for
the factor whose price has not been increased, this is more than offset by the
negative output effect, which is due to the higher marginal costs. This is an
implication of perfect competition. In a different market structure output may
be determined from the demand side (think of a Keynesian short-run model) and
then only the substitution effect will be operative. An increase in one factor price
will then increase the demand for the other factor.

The CRS case

Under CRS, D in (2.29) takes the value

D = 0

everywhere, as shown in Appendix B. Then the factor prices no longer determine
the factor demands uniquely. But the relative factor demand, kd ≡ Kd/Ld, is
determined uniquely by the relative factor price, wL/wK . Indeed, by (2.31) and
(2.32),

MRS =
FL(K,L)

FK(K,L)
=
f(k)− f ′(k)k

f ′(k)
≡ mrs(k) =

wL
wK

, (2.35)

where the second equality comes from (2.15) and (2.16). By straightforward
calculation,

mrs′(k) = −f(k)f ′′(k)

f ′(k)2
= −kf

′′(k)/f ′(k)

α(k)
> 0,

where α(k) ≡ kf ′(k)/f(k) is the elasticity of f w.r.t. k and the numerator is the
elasticity of f ′ w.r.t. k. For instance, in the Cobb-Douglas case f(k) = Akα, we
get mrs′(k) = (1 − α)/α. Given wL/wK , the last equation in (2.35) gives kd as
an implicit function kd = k(wL/wK), where k′(wL/wK) = 1/mrs′(k) > 0. The
solution is illustrated in Fig. 2.4. Under CRS (indeed, for any homogeneous
neoclassical production function) the desired capital-labor ratio is an increasing
function of the inverse factor price ratio and independent of the output level.

21Applying the full content of the implicit function theorem (see Math tools), one could
directly have written down the results (2.33) and (2.34) and would not need the procedure
outlined here, based on differentials. On the other hand the present procedure is probably
more intuitive and easier to remember.
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Figure 2.4: Constancy of MRS along rays when the production function is homogeneous
of degree h (the cost-minimizing capital intensity is the same at all output levels).

To determine Kd and Ld separately we need to know the level of output. And
here we run into the general problem of indeterminacy under perfect competition
combined with CRS. Saying that the output level is so as to maximize profit is
pointless. Well, if at the going factor prices attainable profit is negative, exit
from the market is profit maximizing (or rather loss minimizing), which amounts
to Kd = Ld = 0. But if the profit is positive, there will be no upper bound to the
factor demands. Owing to CRS, doubling the factor inputs will double the profits
of a price taking firm. An equilibrium with positive production is only possible if
profit is zero. And then the firm is indifferent w.r.t. the level of output. Solving
the indeterminacy problem requires a look at the factor markets.

2.4.2 Clearing in factor markets

Considering a closed economy, we denote the available supplies of physical capital
and labor Ks and Ls, respectively, and assume these supplies are inelastic. W.r.t.
capital this is a “natural” assumption since in a closed economy in the short
term the available amount of capital will be predetermined, that is, historically
determined by the accumulated previous investment in the economy. W.r.t. labor
supply it is just a simplifying assumption introduced because the question about
possible responses of labor supply to changes in factor prices is a secondary issue
in the present context.
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The factor markets clear when

Kd = Ks, (2.36)

Ld = Ls. (2.37)

Achieving this equilibrium (state of “rest”) requires that the factor prices adjust
to their equilibrium levels, which are

wK = FK(Ks, Ls), (2.38)

wL = FL(Ks, Ls), (2.39)

by (2.31) and (2.32). This says that in equilibrium the real factor prices are
determined by the marginal productivities of the respective factors at full utiliza-
tion of the given supplies. This holds under DRS as well as CRS. So, under
non-increasing returns to scale there is, at the macroeconomic level, a unique
equilibrium (wK , wL, K

d, Ld) given by the above four equilibrium conditions for
the factor markets.22 It is an equilibrium in the sense that no agent has an
incentive to “deviate”.
As to comparative statics, since FKK < 0, a larger capital supply implies a

lower wK , and since FLL < 0, a larger labor supply implies a lower wL.
The intuitive mechanism behind the attainment of equilibrium is that if, for

example, for a short moment wK < FK(Ks, Ls), then Kd > Ks and so competi-
tion between the firms will generate an upward pressure on wK until equality is
obtained. And if for a short moment wK > FK(Ks, Ls), then Kd < Ks and so
competition between the suppliers of capital will generate a downward pressure
on wK until equality is obtained.
Looking more carefully at the matter, however, we see that this intuitive

reasoning fits at most the DRS case. In the CRS case we have FK(Ks, Ls) = f(ks),
where ks ≡ Ks/Ls. Here we can only argue that for instance wK < FK(Ks, Ls)
implies kd > ks. And even if this leads to upward pressure on wK until kd = ks

is achieved, and even if both factor prices have obtained their equilibrium levels
given by (2.38) and (2.39), there is nothing to induce the representative firm (or
the many firms in the actual economy taken together) to choose the “right”input
levels so as to satisfy the clearing conditions (2.36) and (2.37). In this way the
indeterminacy under CRS pops up again, this time as a problem endangering
stability of the equilibrium.

Stability not guaranteed*

To substantiate the point that the indeterminacy under CRS may endanger sta-
bility of competitive equilibrium, let us consider a Walrasian tâtonnement ad-
22At the microeconomic level, under CRS, industry structure remains indeterminate in that

firms are indifferent as to their size.
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justment process.23 We imagine that our period is sub-divided into many short
time intervals (t, t + ∆t). In the initial short time interval the factor markets
may not be in equilibrium. It is assumed that no capital or labor is hired out
of equilibrium. To allow an analysis in continuous time, we let ∆t → 0. A dot
over a variable denotes the time derivative, i.e., ẋ(t) = dx(t)/dt. The adjustment
process assumed is the following:

K̇d(t) = λ1

[
FK(Kd(t), Ld(t))− wK(t)

]
, λ1 > 0,

L̇d(t) = λ2

[
FL(Kd(t), Ld(t))− wL(t)

]
, λ2 > 0,

ẇK(t) = Kd(t)−Ks,

ẇL(t) = Ld(t)− Ls,
where the initial values, Kd(0), Ld(0), wK(0), and wL(0), are given. The parame-
ters λ1 and λ2 are constant adjustment speeds. The corresponding adjustment
speeds for the factor prices are set equal to one by choice of measurement units of
the inputs. Of course, the four endogenous variables should be constrained to be
nonnegative, but that is not important for the discussion here. The system has
a unique stationary state: Kd(t) = Ks, Ld(t) = Ls, wK(t) = KK(Ks, Ls), wL(t)
= KL(Ks, Ls).
A widespread belief, even in otherwise well-informed circles, seems to be that

with such adjustment dynamics, the stationary state is at least locally asymptot-
ically stable. By this is meant that there exists a (possibly only small) neigh-
borhood, N , of the stationary state with the property that if the initial state,
(Kd(0), Ld(0), wK(0), wL(0)), belongs to N , then the solution (Kd(t), Ld(t),
wK(t), wL(t)) converges to the stationary state for t→∞?
Unfortunately, however, this stability property is not guaranteed. To bear

this out, it is enough to present a counterexample. Let F (K,L) = K
1
2L

1
2 , λ1

= λ2 = Ks = Ls = 1, and suppose Kd(0) = Ld(0) > 0 and wK(0) = wL(0) > 0.
All this symmetry implies that Kd(t) = Ld(t) = x(t) > 0 and wK(t) = wL(t)
= w(t) for all t ≥ 0. So FK(Kd(t), Ld(t)) = 0.5x(t)−0.5x(t)0.5 = 0.5, and similarly
FL(Kd(t), Ld(t)) = 0.5 for all t ≥ 0. Now the system is equivalent to the two-
dimensional system,

ẋ(t) = 0.5− w(t), (2.40)

ẇ(t) = x(t)− 1. (2.41)

Using the theory of coupled linear differential equations, the solution is24

x(t) = 1 + (x(0)− 1) cos t− (w(0)− 0.5) sin t, (2.42)

w(t) = 0.5 + (w(0)− 0.5) cos t+ (x(0)− 1) sin t. (2.43)
23Tâtonnement is a French word meaning “groping”.
24For details, see hints in Exercise 2.6.
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The solution exhibits undamped oscillations and never settles down at the sta-
tionary state, (1, 0.5), if not being there from the beginning. In fact, the solution
curves in the (x,w) plane will be circles around the stationary state. This is
so whatever the size of the initial distance,

√
(x(0)− 1)2 + (w(0)− 0.5)2, to the

stationary point.
The economic mechanism is as follows. Suppose for instance that x(0) < 1

and w(0) < 0.5. Then to begin with there is excess supply and so w will be falling
while, with w below marginal products, x will be increasing. When x reaches its
potential equilibrium value, 1, w is at its trough and so induces further increases
in the factor demands, thus bringing about a phase where x > 1. This excess
demand causes w to begin an upturn. When w reaches its potential equilibrium
value, 0.5, however, excess demand, x− 1, is at its peak and this induces further
increases in factor prices, w. This brings about a phase where w > 0.5 so that
factor prices exceed marginal products, which leads to declining factor demands.
But as x comes back to its potential equilibrium value, w is at its peak and drives
x further down. Thus excess supply arises which in turn triggers a downturn of w.
This continues in never ending oscillations where the overreaction of one variable
carries the seed to an overreaction of the other variable soon after and so on.
This possible outcome underlines that the theoretical existence of equilibrium

is one thing and stability of the equilibrium is another. In particular under CRS,
where demand functions for inputs are absent, the issue of stability can be more
intricate than one might at first glance think.

The link between capital costs and the interest rate*

Returning to the description of equilibrium, we shall comment on the relationship
between the factor price wK and the more everyday concept of an interest rate.
The factor price wK is the cost per unit of capital service. It has different names
in the literature such as the rental price, the rental rate, the unit capital cost, or
the user cost. It is related to the interest and depreciation costs that the owner of
the capital good in question defrays. In the simple neoclassical setup considered
here, it does not matter whether the firm rents the capital it uses or owns it;
in the latter case, wK , is the imputed capital cost, i.e., the forgone interest plus
depreciation.
As to depreciation it is common in simple macroeconomics to apply the ap-

proximation that, due to wear and tear, a constant fraction δ (where 0 ≤ δ ≤ 1)
of a given capital stock evaporates per period. If for instance the period length
is one year and δ = 0.1, this means that a given machine in the next year has
only the fraction 0.9 of its productive capacity in the current year. Otherwise the
productive characteristics of a capital good are assumed to be the same whatever
its time of birth. Sometimes δ is referred to as the rate of physical capital depre-
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ciation or the deterioration rate. When changes in relative prices can occur, this
must be distinguished from the economic depreciation of capital which refers to
the loss in economic value of a machine after one year.
Let pt−1 be the price of a certain type of machine bought at the end of period

t− 1. Let prices be expressed in the same numeraire as that in which the interest
rate, r, is measured. And let pt be the price of the same type of machine one
period later. Then the economic depreciation in period t is

pt−1 − (1− δ)pt = δpt − (pt − pt−1).

The economic depreciation thus equals the value of the physical wear and tear
minus the capital gain (positive or negative) on the machine.
By holding the machine the owner faces an opportunity cost, namely the

forgone interest on the value pt−1 placed in the machine during period t. If rt is
the interest rate on a loan from the end of period t−1 to the end of period t, this
interest cost is rtpt−1. The benefit of holding the (new) machine is that it can be
rented out to the representative firm and provide the return wKt at the end of
the period. Since there is no uncertainty, in equilibrium we must then have wKt
= rtpt−1 + δpt − (pt − pt−1), or

wKt − δpt + pt − pt−1

pt−1

= rt. (2.44)

This is a no-arbitrage condition saying that the rate of return on holding the
machine equals the rate of return obtainable in the loan market (no profitable
arbitrage opportunities are available).25

In the simple setup considered so far, the capital good and the produced good
are physically identical and thus have the same price. As the produced good
is our numeraire, we have pt−1 = pt = 1. This has two implications. First, the
interest rate, rt, is a real interest rate so that 1 + rt measures the rate at which
future units of output can be traded for current units of output. Second, (2.44)
simplifies to

wKt − δ = rt.

Combining this with equation (2.38), we see that in the simple neoclassical setup
the equilibrium real interest rate is determined as

rt = FK(Ks
t , L

s
t)− δ, (2.45)

25In continuous time analysis the rental rate, the interest rate, and the price of the machine
are considered as differentiable functions of time, wK(t), r(t), and p(t), respectively. In analogy
with (2.44) we then get wK(t) = (r(t) + δ)p(t)− ṗ(t), where ṗ(t) denotes the time derivative of
the price p(t).

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



2.5. More complex model structures* 47

whereKS
t and L

s
t are predetermined. Under CRS this takes the form rt = f ′(kst )−

δ, where kst ≡ Ks
t /L

s
t .

We have assumed that the firms rent capital goods from their owners, presum-
ably the households. But as long as there is no uncertainty, no capital adjustment
costs, and no taxation, it will have no consequences for the results if instead we
assume that the firms own the physical capital they use and finance capital invest-
ment by issuing bonds or shares. Then such bonds and shares would constitute
financial assets, owned by the households and offering a rate of return rt as given
by (2.45).

2.5 More complex model structures*

The neoclassical setup described above may be useful as a first way of organizing
one’s thoughts about the production side of the economy. To come closer to
a model of how modern economies function, however, many modifications and
extensions are needed.

2.5.1 Convex capital installation costs

In the real world the capital goods used by a production firm are usually owned
by the firm itself rather than rented for single periods on rental markets. This is
because inside the specific plant in which these capital goods are an integrated
part, they are generally worth much more than outside. So in practice firms ac-
quire and install fixed capital equipment with a view on maximizing discounted
expected profits in the future. The cost associated with this fixed capital in-
vestment not only includes the purchase price of new equipment, but also the
installation costs (the costs of setting up the new fixed equipment in the firm and
the associated costs of reorganizing work processes).
Assuming the installation costs are strictly convex in the level of investment,

the firm has to solve an intertemporal optimization problem. Forward-looking
expectations thus become important and this has implications for how equilib-
rium in the output market is established and how the equilibrium interest rate is
determined. Indeed, in the simple neoclassical setup above, the interest rate equi-
librates the market for capital services. The value of the interest rate is simply
tied down by the equilibrium condition (2.39) in this market and what happens
in the output market is a trivial consequence of this. But with convex capital
installation costs the firm’s capital stock is given in the short run and the interest
rate(s) become(s) determined elsewhere in the model, as we shall see in chapters
14 and 15.
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2.5.2 Long-run vs. short-run production functions

In the discussion of production functions up to now we have been silent about the
distinction between “ex ante”and “ex post”substitutability between capital and
labor. By ex ante is meant “when plant and machinery are to be decided upon”
and by ex post is meant “after the equipment is designed and constructed”. In the
standard neoclassical competitive setup like in (2.35) there is a presumption that
also after the construction and installation of the equipment in the firm, the ratio
of the factor inputs can be fully adjusted to a change in the relative factor price.
In practice, however, when some machinery has been constructed and installed,
its functioning will often require a more or less fixed number of machine operators.
What can be varied is just the degree of utilization of the machinery. That is,
after construction and installation of the machinery, the choice opportunities are
no longer described by the neoclassical production function but by a Leontief
production function,

Y = min(AuK̄,BL), A > 0, B > 0, (2.46)

where K̄ is the size of the installed machinery (a fixed factor in the short run)
measured in effi ciency units, u is its utilization rate (0 ≤ u ≤ 1), and A and B
are given technical coeffi cients measuring effi ciency (cf. Section 2.1.2).
So in the short run the choice variables are u and L. In fact, essentially only

u is a choice variable since effi cient production trivially requires L = AuK̄/B.
Under “full capacity utilization”we have u = 1 (each machine is used 24 hours
per day seven days per week). “Capacity”is given as AK̄ per week. Producing
effi ciently at capacity requiresL = AK̄/B and the marginal product by increasing
labor input is here nil. But if demand, Y d, is less than capacity, satisfying this
demand effi ciently requires L = Y d/B and u = BL/(AK̄) < 1. As long as u < 1,
the marginal productivity of labor is a constant, B.
The various effi cient input proportions that are possible ex ante may be ap-

proximately described by a neoclassical CRS production function. Let this func-
tion on intensive form be denoted y = f(k). When investment is decided upon
and undertaken, there is thus a choice between alternative effi cient pairs of the
technical coeffi cients A and B in (2.46). These pairs satisfy

f(k) = Ak = B. (2.47)

So, for an increasing sequence of k’s, k1, k2,. . . , ki,. . . , the corresponding pairs are
(Ai, Bi) = (f(ki)/ki, f(ki)), i = 1, 2,. . . .26 We say that ex ante, depending on the
relative factor prices as they are “now”and are expected to evolve in the future,

26The points P and Q in the right-hand panel of Fig. 2.3 can be interpreted as constructed
this way from the neoclassical production function in the left-hand panel of the figure.
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a suitable technique, (Ai, Bi), is chosen from an opportunity set described by the
given neoclassical production function. But ex post, i.e., when the equipment
corresponding to this technique is installed, the production opportunities are
described by a Leontief production function with (A,B) = (Ai, Bi).
In the picturesque language of Phelps (1963), technology is in this case putty-

clay. Ex ante the technology involves capital which is “putty” in the sense of
being in a malleable state which can be transformed into a range of various
machinery requiring capital-labor ratios of different magnitude. But once the
machinery is constructed, it enters a “hardened”state and becomes ”clay”. Then
factor substitution is no longer possible; the capital-labor ratio at full capacity
utilization is fixed at the level k = Bi/Ai, as in (2.46). Following the terminology
of Johansen (1972), we say that a putty-clay technology involves a “long-run
production function”which is neoclassical and a “short-run production function”
which is Leontief.

Table 1. Technologies classified according to
factor substitutability ex ante and ex post.

Ex post substitution
Ex ante substitution possible impossible
possible putty-putty putty-clay
impossible clay-clay

In contrast, the standard neoclassical setup assumes the same range of sub-
stitutability between capital and labor ex ante and ex post. Then the technology
is called putty-putty. This term may also be used if ex post there is at least some
substitutability although less than ex ante. At the opposite pole of putty-putty
we may consider a technology which is clay-clay. Here neither ex ante nor ex post
is factor substitution possible. Table 1 gives an overview of the alternative cases.
The putty-clay case is generally considered the realistic case. As time pro-

ceeds, technological progress occurs. To take this into account, we may replace
(2.47) and (2.46) by f(kt, t) = Atkt = Bt and Yt = min(AtutK̄t, BtLt), respec-
tively. If a new pair of Leontief coeffi cients, (At2 , Bt2), effi ciency-dominates its
predecessor (by satisfying At2 ≥ At1 and Bt2 ≥ Bt1 with at least one strict equal-
ity), it may pay the firm to invest in the new technology at the same time as
some old machinery is scrapped. Real wages tend to rise along with technolog-
ical progress and the scrapping occurs because the revenue from using the old
machinery in production no longer covers the associated labor costs.
The clay property ex-post of many technologies is important for short-run

analysis. It implies that there may be non-decreasing marginal productivity of
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labor up to a certain point. It also implies that in its investment decision the
firm will have to take expected future technologies and future factor prices into
account. For many issues in long-run analysis the clay property ex-post may be
less important, since over time adjustment takes place through new investment.

2.5.3 A simple portrayal of price-making firms

Another modification which is important in short- and medium-run analysis,
relates to the assumed market forms. Perfect competition is not a good approx-
imation to market conditions in manufacturing and service industries. To bring
perfect competition in the output market in perspective, we give here a brief re-
view of firms’behavior under a form of monopolistic competition that is applied
in many short-run models.
Suppose there is a large number of differentiated goods, i = 1, 2, . . . , n, each

produced by a separate firm. In the short run n is given. Each firm has monopoly
on its own good (supported, say, by a trade mark, patent protection, or simply
secrecy regarding the production recipe). The goods are imperfect substitutes to
each other and so indirect competition prevails. Each firm is small in relation to
the “sum”of competing firms and perceives that these other firms do not respond
to its actions.
In the given period let firm i face a given downward-sloping demand curve for

its product,

Yi ≤
(
Pi
P

)−ε
Y

n
≡ D(Pi), ε > 1. (2.48)

Here Yi is the produced quantity and the expression on the right-hand side of the
inequality is the demand as a function of the price Pi chosen by the firm.27 The
“general price level”P (a kind of average across the different goods, cf. Chapter
22) and the “general demand level”, given by the index Y , matter for the position
of the demand curve in the (Yi, Pi) plan, cf. Fig. 2.5. The price elasticity
of demand, ε, is assumed constant and higher than one (otherwise there is no
solution to the monopolist’s decision problem). Variables that the monopolist
perceives as exogenous are implicit in the demand function symbol D.We imagine
prices are expressed in terms of money (so they are “nominal” prices, hence
denoted by capital letters whereas we generally use small letters for “real”prices).
For simplicity, factor markets are still assumed competitive. Given the nomi-

nal factor prices, WK and WL, firm i wants to maximize its profit

Πi = PiYi −WKKi −WLLi,

27We ignore production for inventory holding.
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subject to (2.48) and the neoclassical production function Yi = F (Ki, Li). For the
purpose of simple comparison with the case of perfect competition as described
in Section 2.4, we return to the case where both labor and capital are variable
inputs in the short run.28 It is no serious restriction on the problem to assume
the monopolist will want to produce the amount demanded so that Yi = D(Pi).
It is convenient to solve the problem in two steps.

Figure 2.5: Determination of the monopolist price and output.

Step 1. Imagine the monopolist has already chosen the output level Yi. Then
the problem is to minimize cost:

min
Ki,Li

WKKi +WLLi s.t. F (Ki, Li) = Yi.

An interior solution (Ki, Li) will satisfy the first-order conditions

λFK(Ki, Li) = WK , λFL(Ki, Li) = WL, (2.49)

where λ is the Lagrange multiplier. Since F is neoclassical and thereby strictly
quasiconcave, the first-order conditions are not only necessary but also suffi cient
for (Ki, Li) to be a solution, and (Ki, Li) will be unique so that we can write
these conditional factor demands as functions, Kd

i = K(WK ,WL, Yi) and Ldi =
L(WK ,WL, Yi). This gives rise to the cost function C(Yi) = WKK(WK ,WL, Yi)
+WLL(WK ,WL, Yi).
Step 2. Solve

max
Yi

Π(Yi) = R(Yi)− C(Yi) = P(Yi)Yi − C(Yi).

28Generally, the technology would differ across the different product lines and F should thus
be replaced by F i, but for notational convenience we ignore this.
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We have here introduced “total revenue”R(Yi) = P(Yi)Yi, where P(Yi) is the
inverse demand function defined by P(Yi) ≡ D−1(Yi) = [Yi/(Y/n)]−1/ε P from
(2.48). The first-order condition is

R′(Yi) = P(Yi) + P ′(Yi)Yi = C ′(Yi), (2.50)

where the left-hand side is marginal revenue and the right-hand side is marginal
cost.
A suffi cient second-order condition is that Π′′(Yi) = R′′(Yi)− C ′′(Yi) < 0, i.e.,

the marginal revenue curve crosses the marginal cost curve from above. In the
present case this is surely satisfied if we assume C ′′(Yi) ≥ 0, which also ensures
existence and uniqueness of a solution to (2.50). Substituting this solution, which
we denote Y s

i , cf. Fig. 2.5, into the conditional factor demand functions from
Step 1, we find the factor demands, Kd

i and L
d
i . Owing to the downward-sloping

demand curves the factor demands are unique whether the technology exhibits
DRS, CRS, or IRS. Thus, contrary to the perfect competition case, neither CRS
nor IRS pose particular problems.
From the definition R(Yi) = P (Yi)Yi follows

R′(Yi) = Pi

(
1 +

Yi
Pi
P ′(Yi)

)
= Pi

(
1− 1

ε

)
= Pi

ε− 1

ε
.

So the pricing rule is Pi = (1 +µ)C ′(Yi), where Yi is the profit maximizing output
level and µ ≡ ε/(ε − 1) − 1 > 0 is the mark-up on marginal cost. An analytical
very convenient feature is that the markup is thus a constant.
In parallel with (2.31) and (2.32) the solution to firm i’s decision problem is

characterized by the marginal revenue productivity conditions

R′(Y s
i )FK(Kd

i , L
d
i ) = WK , (2.51)

R′(Y s
i )FL(Kd

i , L
d
i ) = WL, (2.52)

where Y s
i = F (Kd

i , L
d
i ). These conditions follow from (2.49), since the Lagrange

multiplier equals marginal cost (see Appendix A), which equals marginal revenue.
That is, at profit maximum the marginal revenue products of capital and labor,
respectively, equal the corresponding factor prices. Since Pi > R′(Y s

i ), the factor
prices are below the value of the marginal productivities. This reflects the market
power of the firms.
In macro models a lot of symmetry is often assumed. If there is complete

symmetry across product lines and if factor markets clear as in (2.36) and (2.37)
with inelastic factor supplies, Ks and Ls, then Kd

i = Ks/n and Ldi = Ls/n.
Furthermore, all firms will choose the same price so that Pi = P, i = 1, 2, . . . , n.
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Then the given factor supplies, together with (2.51) and (2.52), determine the
equilibrium real factor prices:

wK ≡ WK

P
=

1

1 + µ
FK(

Ks

n
,
Ls

n
),

wL ≡
WL

P
=

1

1 + µ
FL(

Ks

n
,
Ls

n
),

where we have used that R′(Y s
i ) = P/(1+µ) under these circumstances. As under

perfect competition, the real factor prices are proportional to the corresponding
marginal productivities, although with a factor of proportionality less than one,
namely equal to the inverse of the markup. This observation is sometimes used
as a defence for applying the simpler perfect-competition framework for studying
certain long-run aspects of the economy. For these aspects, the size of the pro-
portionality factor may be immaterial, at least as long as it is relatively constant
over time. Indeed, the constant markups open up for a simple transformation of
many of the perfect competition results to monopolistic competition results by
inserting the markup factor 1 + µ the relevant places in the formulas.
If in the short term only labor is a variable production factor, then (2.51)

need not hold. As claimed by Keynesian and New Keynesian thinking, also the
prices chosen by the firms may be more or less fixed in the short run because
the firms face price adjustment costs (“menu costs”) and are reluctant to change
prices too often, at least vis-a-vis changes in demand. Then in the short run only
the produced quantity will adjust to changes in demand. As long as the output
level is within the range where marginal cost is below the price, such adjustments
are still beneficial to the firm. As a result, even (2.52) may at most hold “on
average”over the business cycle. These matters are dealt with in Part V of this
book.
In practice, market power and other market imperfections also play a role in

the factor markets, implying that further complicating elements enter the pic-
ture. One of the tasks of theoretical and empirical macroeconomics is to clarify
the aggregate implications of market imperfections and sort out which market
imperfections are quantitatively important in different contexts.

2.5.4 The financing of firms’operations

We have so far talked about aspects related to production and pricing. What
about the financing of a firm’s operations? To acquire not only its fixed capital
(structures and machines) but also its raw material and other intermediate inputs,
a firm needs funds (there are expenses before the proceeds from sale arrive). These
funds ultimately come from the accumulated saving of households. In long-run
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macromodels to be considered in the next chapters, uncertainty as well as non-
neutrality of corporate taxation are ignored; in that context the capital structure
(the debt-equity ratio) of firms is indeterminate and irrelevant for production
outcomes.29 In those chapters we shall therefore concentrate on the latter. Later
chapters, dealing with short- and medium-run issues, touch upon cases where
capital structure and bankruptcy risk matter and financial intermediaries enter
the scene.

2.6 Literature notes

As to the question of the empirical validity of the constant returns to scale as-
sumption, Malinvaud (1998) offers an account of the econometric diffi culties as-
sociated with estimating production functions. Studies by Basu (1996) and Basu
and Fernald (1997) suggest returns to scale are about constant or decreasing.
Studies by Hall (1990), Caballero and Lyons (1992), Harris and Lau (1992),
Antweiler and Treffl er (2002), and Harrison (2003) suggest there are quantita-
tively significant increasing returns, either internal or external. On this back-
ground it is not surprising that the case of IRS (at least at industry level), to-
gether with market forms different from perfect competition, has in recent years
received more attention in macroeconomics and in the theory of economic growth.
Macroeconomists’use of the value-laden term “technological progress”in con-

nection with technological change may seem suspect. But the term should be
interpreted as merely a label for certain types of shifts of isoquants in an abstract
universe. At a more concrete and disaggregate level analysts of course make use
of more refined notions about technological change, recognizing not only benefits
of new technologies, but for instance also the risks, including risk of fundamental
mistakes (think of the introduction and later abandonment of asbestos in the
construction industry). For history of technology see, e.g., Ruttan (2001) and
Smil (2003).
When referring to a Cobb-Douglas (or CES) production function some au-

thors implicitly assume that the partial output elasticities w.r.t. inputs time-
independent and thereby independent of technological change. For the case where
the inputs in question are renewable and nonrenewable natural resources, Growiec
and Schumacher (2008) study cases of time-dependency of the partial output elas-
ticities.
When technical change is not “neutral”in one of the senses described, it may

be systematically “biased”in alternative “directions”. The reader is referred to
the specialized literature on economic growth, cf. literature notes to Chapter 1.

29In chapter 14 we return to this irrelevance proposition, called the Modigliani-Miller theorem.
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Embodied technological progress, sometimes called investment-specific tech-
nological progress, is explored in, for instance, Solow (1960), Greenwood et al.
(1997), and Groth and Wendner (2014).

Time series for different countries’ aggregate and to some extent sectorial
capital stocks are available from Penn World Table, ..., EU KLEMS, ...., and the
AMECO database, .

The concept of Gorman preferences and conditions ensuring that a represen-
tative household is admitted are surveyed in Acemoglu (2009). Another source,
also concerning the conditions for the representative firm to be a meaningful no-
tion, is Mas-Colell et al. (1995). For general discussions of the limitations of
representative agent approaches, see Kirman (1992) and Gallegati and Kirman
(1999). Reviews of the “Cambridge Controversy” are contained in Mas-Colell
(1989) and Felipe and Fisher (2003). The last-mentioned authors find the condi-
tions required for the well-behavedness of these constructs so stringent that it is
diffi cult to believe that actual economies are in any sense close to satisfy them.
For less distrustful views and constructive approaches to the issues, see for in-
stance Johansen (1972), Malinvaud (1998), Jorgenson et al. (2005), and Jones
(2005).

Scarf (1960) provided a series of examples of lack of dynamic stability of an
equilibrium price vector in an exchange economy. Mas-Colell et al. (1995) survey
the later theoretical development in this field.

The counterexample to guaranteed stability of the neoclassical factor market
equilibrium presented towards the end of Section 2.4 is taken from Bliss (1975),
where further perspectives are discussed. It may be argued that this kind of
stability questions should be studied on the basis of adjustment processes of a
less mechanical nature than aWalrasian tâtonnement process. The view would be
that trade out of equilibrium should be incorporated in the analysis and agents’
behavior out of equilibrium should be founded on some kind of optimization
or “satisficing”, incorporating adjustment costs and imperfect information. The
field is complicated and the theory not settled. Yet it seems fair to say that the
studies of adjustment processes out of equilibrium indicate that the equilibrating
force of Adam Smith’s invisible hand is not without its limits. See Fisher (1983),
Osborne and Rubinstein (1990), and Negishi (2008) for reviews and elaborate
discussion of these issues.

We introduced the assumption that physical capital depreciation can be de-
scribed as geometric (in continuous time exponential) evaporation of the capital
stock. This formula is popular in macroeconomics, more so because of its simplic-
ity than its realism. An introduction to more general approaches to depreciation
is contained in, e.g., Nickell (1978).
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2.7 Appendix

A. Strict quasiconcavity

Consider a function f : A → R, where A is a convex set, A ⊆ Rn.30 Given a
real number a, if f(x) = a, the upper contour set is defined as {x ∈ A| f(x) ≥ a}
(the set of input bundles that can produce at least the amount a of output). The
function f(x) is called quasiconcave if its upper contour sets, for any constant
a, are convex sets. If all these sets are strictly convex, f(x) is called strictly
quasiconcave.

Average and marginal costs To show that (2.14) holds with n production
inputs, n = 1, 2,. . . , we derive the cost function of a firm with a neoclassical
production function, Y = F (X1, X2, . . . , Xn). Given a vector of strictly positive
input prices w = (w1, . . . , wn) >> 0, the firm faces the problem of finding a cost-
minimizing way to produce a given positive output level Ȳ within the range of
F. The problem is

min
n∑
i=1

wiXi s.t. F (X1, . . . , Xn) = Ȳ and Xi ≥ 0, i = 1, 2, . . . , n.

An interior solution, X∗ = (X∗1 , . . . , X
∗
n), to this problem satisfies the first-order

conditions λF ′i (X
∗) = wi, where λ is the Lagrange multiplier, i = 1, . . . , n.31 Since

F is neoclassical and thereby strictly quasiconcave in the interior of Rn+, the first-
order conditions are not only necessary but also suffi cient for the vector X∗ to be
a solution, andX∗ will be unique32 so that we can write it as a function, X∗(Ȳ ) =
(X∗1 (Ȳ ), . . . , X∗n(Ȳ )). This gives rise to the cost function C(Ȳ ) =

∑n
i=1wiX

∗
i (Ȳ ).

So average cost is C(Ȳ )/Ȳ . We find marginal cost to be

C ′(Ȳ ) =
n∑
i=1

wiX
∗′
i (Ȳ ) = λ

n∑
i=1

F ′i (X
∗)X∗′i (Ȳ ) = λ,

where the third equality comes from the first-order conditions, and the last equal-
ity is due to the constraint F (X∗(Ȳ )) = Ȳ , which, by taking the total derivative
on both sides, gives

∑n
i=1 F

′
i (X

∗)X∗′i (Ȳ ) = 1. Consequently, the ratio of average
to marginal costs is

C(Ȳ )/Ȳ

C ′(Ȳ )
=

∑n
i=1wiX

∗
i (Ȳ )

λȲ
=

∑n
i=1 F

′
i (X

∗)X∗i (Ȳ )

F (X∗)
,

30Recall that a set S is said to be convex if x, y ∈ S and λ ∈ [0, 1] implies λx+ (1− λ)y ∈ S.
31Since in this section we use a bit of vector notation, we exceptionally mark first-order partial

derivatives by a prime in order to clearly distinguish from the elements of a vector (so we write
F ′i instead of our usual Fi).
32See Sydsaeter et al. (2008), pp. 74, 75, and 125.
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which in analogy with (2.13) is the elasticity of scale at the point X∗. This proves
(2.14).

Suffi cient conditions for strict quasiconcavity The claim (iii) in Section
2.1.3 was that a continuously differentiable two-factor production function F (K,L)
with CRS, satisfying FK > 0, FL > 0, and FKK < 0, FLL < 0, will automatically
also be strictly quasi-concave in the interior of R2 and thus neoclassical.
To prove this, consider a function of two variables, z = f(x, y), that is twice

continuously differentiable with f1 ≡ ∂z/∂x > 0 and f2 ≡ ∂z/∂y > 0, everywhere.
Then the equation f(x, y) = a, where a is a constant, defines an isoquant,
y = g(x), with slope g′(x) = −f1(x, y)/f2(x, y). Substitute g(x) for y in this
equation and take the derivative w.r.t. x. By straightforward calculation we find

g′′(x) = −f
2
1 f22 − 2f1f2f21 + f 2

2 f11

f 3
2

(2.53)

If the numerator is negative, then g′′(x) > 0; that is, the isoquant is strictly
convex to the origin. And if this holds for all (x, y), then f is strictly quasi-
concave in the interior of R2. A suffi cient condition for a negative numerator is
that f11 < 0, f22 < 0 and f21 ≥ 0. All these conditions, including the last three
are satisfied by the given function F. Indeed, FK , FL, FKK , and FLL have the
required signs. And when F has CRS, F is homogeneous of degree 1 and thereby
FKL > 0, see Appendix B. Hereby claim (iii) in Section 2.1.3 is proved.

B. Homogeneous production functions

The claim (iv) in Section 2.1.3 was that a two-factor production function with
CRS, satisfying FK > 0, FL > 0, and FKK < 0, FLL < 0, has always FKL > 0,
i.e., there is direct complementarity between K and L. This assertion is implied
by the following observations on homogeneous functions.
Let Y = F (K, L) be a twice continuously differentiable production function

with FK > 0 and FL > 0 everywhere. Assume F is homogeneous of degree h > 0,
that is, for all possible (K,L) and all λ > 0, F (λK, λL) = λhF (K,L). According
to Euler’s theorem (see Math Tools) we then have:

CLAIM 1 For all (K, L), where K > 0 and L > 0,

KFK(K,L) + LFL(K,L) = hF (K,L). (2.54)

Euler’s theorem also implies the inverse:

CLAIM 2 If (2.54) is satisfied for all (K, L), where K > 0 and L > 0, then
F (K,L) is homogeneous of degree h.
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Partial differentiation w.r.t. K and L, respectively, gives, after ordering,

KFKK + LFLK = (h− 1)FK (2.55)

KFKL + LFLL = (h− 1)FL. (2.56)

In (2.55) we can substitute FLK = FKL (by Young’s theorem). In view of Claim
2 this shows:

CLAIM 3 The marginal products, FK and FL, considered as functions of K and
L, are homogeneous of degree h− 1.

We see also that when h ≥ 1 and K and L are positive, then

FKK < 0 implies FKL > 0, (2.57)

FLL < 0 implies FKL > 0. (2.58)

For h = 1 this establishes the direct complementarity result, (iv) in Section 2.1.3,
to be proved. A by-product of the derivation is that also when a neoclassical
production function is homogeneous of degree h > 1 (which implies IRS), does
direct complementarity between K and L hold.

Remark. The terminology around complementarity and substitutability may eas-
ily lead to confusion. In spite of K and L exhibiting direct complementarity when
FKL > 0, K and L are still substitutes in the sense that cost minimization for a
given output level implies that a rise in the price of one factor results in higher
demand for the other factor.

The claim (v) in Section 2.1.3 was the following. Suppose we face a CRS
production function, Y = F (K,L), that has positive marginal products, FK and
FL, everywhere and isoquants, K = g(L), satisfying the condition g′′(L) > 0
everywhere (i.e., F is strictly quasi-concave). Then the partial second derivatives
must satisfy the neoclassical conditions:

FKK < 0, FLL < 0. (2.59)

The proof is as follows. The first inequality in (2.59) follows from (2.53) combined
with (2.55). Indeed, for h = 1, (2.55) and (2.56) imply FKK = −FLKL/K
= −FKLL/K and FKL = −FLLL/K, i.e., FKK = FLL(L/K)2 (or, in the notation
of Appendix A, f22 = f11(x/y)2), which combined with (2.53) gives the conclusion
FKK < 0, when g′′ > 0. The second inequality in (2.59) can be verified in a similar
way.
Note also that for h = 1 the equations (2.55) and (2.56) entail

KFKK = −LFLK and KFKL = −LFLL, (2.60)
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respectively. By dividing the left- and right-hand sides of the first of these equa-
tions with those of the second we conclude that FKKFLL = F 2

KL in the CRS case.
We see also from (2.60) that, under CRS, the implications in (2.57) and (2.58)
can be turned round.
Finally, we asserted in § 2.1.1 that when the neoclassical production function

Y = F (K, L) is homogeneous of degree h, then the marginal rate of substitution
between the production factors depends only on the factor proportion k ≡ K/L.
Indeed,

MRSKL(K,L) =
FL(K,L)

FK(K,L)
=
Lh−1FL(k, 1)

Lh−1FK(k, 1)
=
FL(k, 1)

FK(k, 1)
≡ mrs(k), (2.61)

where k ≡ K/L. The result (2.61) follows even if we only assume F (K,L) is
homothetic. When F (K,L) is homothetic, by definition we can write F (K, L) ≡
ϕ(G(K,L)), where G is homogeneous of degree 1 and ϕ is an increasing function.
In view of this, we get

MRSKL(K,L) =
ϕ′GL(K,L)

ϕ′GK(K,L)
=
GL(k, 1)

GK(k, 1)
,

where the last equality is implied by Claim 3 for h = 1.

C. The Inada conditions combined with CRS

We consider a neoclassical production function, Y = F (K,L), exhibiting CRS.
Defining k ≡ K/L, we can then write Y = LF (k, 1) ≡ Lf(k), where f(0) ≥
0, f ′ > 0, and f ′′ < 0.

Essential inputs In Section 2.1.2 we claimed that the upper Inada condition
forMPL together with CRS implies that without capital there will be no output:

F (0, L) = 0 for any L > 0.

In other words: in this case capital is an essential input. To prove this claim, let
K > 0 be fixed and let L → ∞. Then k → 0, implying, by (2.16) and (2.18),
that FL(K,L) = f(k)− f ′(k)k → f(0). But from the upper Inada condition for
MPL we also have that L→∞ implies FL(K,L)→ 0. It follows that

the upper Inada condition for MPL implies f(0) = 0. (2.62)

Since under CRS, for any L > 0, F (0, L) = LF (0, 1) ≡ Lf(0), we have hereby
shown our claim.
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Similarly, we can show that the upper Inada condition for MPK together
with CRS implies that labor is an essential input. Consider the output-capital
ratio x ≡ Y/K. When F has CRS, we get x = F (1, `) ≡ g(`), where ` ≡ L/K,
g′ > 0, and g′′ < 0. Thus, by symmetry with the previous argument, we find that
under CRS, the upper Inada condition for MPK implies g(0) = 0. Since under
CRS F (K, 0) = KF (1, 0) ≡ Kg(0), we conclude that the upper Inada condition
for MPK together with CRS implies

F (K, 0) = 0 for any K > 0,

that is, without labor, no output.

Suffi cient conditions for output going to infinity when either input goes
to infinity Here our first claim is that when F exhibits CRS and satisfies the
upper Inada condition for MPL and the lower Inada condition for MPK, then

lim
L→∞

F (K,L) =∞ for any K > 0.

To prove this, note that Y can be written Y = Kf(k)/k, since K/k = L. Here,

lim
k→0

f(k) = f(0) = 0,

by continuity and (2.62), presupposing the upper Inada condition for MPL.
Thus, for any given K > 0,

lim
L→∞

F (K,L) = K lim
L→∞

f(k)

k
= K lim

k→0

f(k)− f(0)

k
= K lim

k→0
f ′(k) =∞,

by the lower Inada condition for MPK. This verifies the claim.
Our second claim is symmetric with this and says: when F exhibits CRS and

satisfies the upper Inada condition for MPK and the lower Inada condition for
MPL, then

lim
K→∞

F (K,L) =∞ for any L > 0.

The proof is analogue. So, in combination, the four Inada conditions imply, under
CRS, that output has no upper bound when either input goes to infinity.

D. Concave neoclassical production functions

Two claims made in Section 2.4 are proved here.

CLAIM 1 When a neoclassical production function F (K,L) is concave, it has
non-increasing returns to scale everywhere.
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Proof. We consider a concave neoclassical production function, F . Let x =
(x1, x2) = (K,L). Then we can write F (K,L) as F (x). By concavity, for all pairs
x0,x ∈ R2

+, we have F (x0) − F (x) ≤
∑2

i=1 F
′
i (x)(x0

i − xi). In particular, for
x0 = (0, 0), since F (x0) = F (0, 0) = 0, we have

−F (x) ≤ −
2∑
i=1

F ′i (x)xi. (2.63)

Suppose x ∈R2
++. Then F (x) > 0 in view of F being neoclassical so that FK > 0

and FL > 0. From (2.63) we now find the elasticity of scale to be

2∑
i=1

F ′i (x)xi/F (x) ≤ 1. (2.64)

In view of (2.13) and (2.12), this implies non-increasing returns to scale every-
where. �
CLAIM 2 When a neoclassical production function F (K,L) is strictly concave,
it has decreasing returns to scale everywhere.

Proof. The argument is analogue to that above, but in view of strict concavity
the inequalities in (2.63) and (2.64) become strict. This implies that F has DRS
everywhere. �

2.8 Exercises

2.1
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Chapter 3

The basic OLG model: Diamond

There exists two main analytical frameworks for analyzing the basic intertemporal
choice, consumption versus saving, and the dynamic long-run implications of
this choice: overlapping generations models and representative agent models. In
the first class of models the focus is on (a) the interaction between different
generations alive at the same time, and (b) the never-ending entrance of new
generations. In the second class of models the household sector is modelled as
consisting of a finite number of infinitely-lived agents. One interpretation is that
these agents are dynasties where parents take the utility of their descendants fully
into account by leaving bequests. This approach, which is also called the Ramsey
approach (after the British mathematician and economist Frank Ramsey, 1903-
1930), will be described in Chapter 8 (discrete time) and Chapter 10 (continuous
time).
In the present chapter we introduce the overlapping generations approach

which has shown its usefulness for analysis of questions associated with public
debt problems, taxation of capital income, financing of social security (pensions),
design of educational systems, non-neutrality of money, and the possibility of
speculative bubbles. Our focus will be on the overlapping generations model
called Diamond’s OLG model1 after the American economist and Nobel Prize
laureate Peter A. Diamond (1940-).
Among the strengths of the model are:

• The life-cycle aspect of human behavior is taken into account. Although
the economy is infinitely-lived, the individual agents have finite time hori-
zons. During lifetime one’s educational level, working capacity, income, and
needs change and this is reflected in the individual labor supply and saving
behavior. The aggregate implications of the life-cycle behavior of coexisting
individual agents at different stages in their life is at the centre of attention.

1Diamond (1965).

65



66 CHAPTER 3. THE BASIC OLG MODEL: DIAMOND

• The model takes elementary forms of heterogeneity in the population into
account − there are “old”and there are “young”, there are currently-alive
people and there are as yet unborn whose preferences are not reflected
in current market transactions. Questions relating to the distribution of
income and wealth across generations can be studied. For example, how
does the investment in capital and environmental protection by current
generations affect the conditions for succeeding generations?

3.1 Motives for saving

Before going into the specifics of Diamond’s model, let us briefly consider what
may motivate people to save:

(a) The consumption-smoothing motive for saving. Individuals go through a life
cycle where individual income typically has a hump-shaped time pattern; by
saving and dissaving the individual attempts to obtain the desired smooth-
ing of consumption across lifetime. This is the essence of the life-cycle
saving hypothesis put forward by Nobel laureate Franco Modigliani (1918-
2003) and associates in the 1950s. This hypothesis states that consumers
plan their saving and dissaving in accordance with anticipated variations
in income and needs over lifetime. Because needs vary less over lifetime
than income, the time profile of saving tends to be hump-shaped with some
dissaving early in life (while studying etc.), positive saving during the years
of peak earnings and then dissaving after retirement.

(b) The precautionary motive for saving. Income as well as needs may vary
due to conditions of uncertainty: sudden unemployment, illness, or other
kinds of bad luck. By saving, the individual can obtain a buffer against
such unwelcome events.

Horioka and Watanabe (1997) find that empirically, the saving motives (a)
and (b) are of dominant importance (Japanese data). Yet other motives include:

(c) Saving enables the purchase of durable consumption goods and owner-occupied
housing as well as repayment of debt.

(d) Saving may be motivated by the desire to leave bequests to heirs.

(e) Saving may simply be motivated by the fact that financial wealth may lead
to social prestige and economic or political power.
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Diamond’s OLG model aims at simplicity and concentrates on motive (a).
Only one aspect of motive (a) is in fact considered, namely the saving for re-
tirement. People live for two periods only, as “young”, working full-time, and as
“old”, having retired and living by their savings. The Diamond model abstracts
from a possible bequest motive.
Now to the details.

3.2 The model framework

The flow of time is divided into successive periods of equal length, taken as the
time unit. Given the two-period lifetime of (adult) individuals, the period length
is understood to be around, say, 30 years. The main assumptions are:

1. The number of young people in period t, denoted Lt, changes over time
according to Lt = L0(1 + n)t, t = 0, 1, 2, ..., where n is a constant, n > −1.
Indivisibility is ignored and so Lt is just considered a positive real number.

2. Only the young work. Each young supplies one unit of labor inelastically.
The division of available time between work and leisure is thereby considered
as exogenous.

3. Output is homogeneous and can be used for consumption as well as invest-
ment in physical capital. Physical capital is the only non-human asset in
the economy; it is owned by the old and rented out to the firms. Output is
the numeraire (unit of account) used in trading. Money (means of payment)
is ignored.2

4. The economy is closed (no foreign trade).

5. Firms’technology has constant returns to scale.

6. In each period three markets are open, a market for output, a market for
labor services, and a market for capital services. Perfect competition rules
in all markets. Uncertainty is absent; when a decision is made, its conse-
quences are known.

7. Agents have perfect foresight.

Assumption 7 entails the following. First, the agents are assumed to have
“rational expectations”or, with a better name, “model-consistent expectations”.

2As to the disregard of money we may imagine that agents have safe electronic accounts in
a fictional central bank allowing costless transfers between accounts.
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This means that forecasts made by the agents coincide with the forecasts that
can be calculated on the basis of the model. Second, as there are no stochastic
elements in the model (no uncertainty), the forecasts are point estimates rather
than probabilistic forecasts. Thereby the model-consistent expectations take the
extreme form of perfect foresight : the agents agree in their expectations about
the future evolution of the economy and these expectations are point estimates
that coincide with the subsequent actual evolution of the economy.

Figure 3.1: The two-period model’s time structure.

Of course, this is an unrealistic assumption. The model makes this assumption
in order to simplify in a first approach. The results that emerge will be the
outcome of economic mechanisms in isolation from expectational errors. In this
sense the model constitutes a “pure”case (benchmark case).
The time structure of the model is illustrated in Fig. 3.1. In every period

two generations are alive and interact with each other as indicated by the arrows.
The young supply labor to the firms, earn a labor income part of which they
consume and part of which they save for retirement. The young thereby offset
the dissaving by the old and possibly bring about positive net investment in the
economy. At the end of the period the savings by the young is converted into
direct ownership of new capital goods which constitute the non-consumed part
of aggregate output plus capital goods left over from the previous period. In the
next period the now old owners of the capital goods rent them out to the firms.
We may imagine that the firms are owned by the old, but this ownership is not
visible in the equilibrium allocation because pure profits will be nil due to the
combination of perfect competition and constant returns to scale.
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Let the output good be the numeraire and let r̂t denote the rental rate for
capital in period t; that is, r̂t is the real price a firm has to pay at the end of
period t for the right to use one unit of someone else’s physical capital through
period t. So the owner of Kt units of physical capital receives a

real (net) rate of return on capital =
r̂tKt − δKt

Kt

= r̂t − δ, (3.1)

where δ is the rate of physical capital depreciation which is assumed constant,
0 ≤ δ ≤ 1.
Suppose there is also a market for loans, the “credit market”. Assume you

have lent out one unit of output from the end of period t− 1 to the end of period
t. If the real interest rate in the loan market is rt, then, at the end of period t you
should get back 1 + rt units of output. In the absence of uncertainty, equilibrium
requires that capital and loans give the same rate of return,

r̂t − δ = rt. (3.2)

This no-arbitrage condition indicates how the rental rate for capital and the more
everyday concept, the interest rate, would be related in an equilibrium where
both the market for capital services and a credit market were active. We shall
see, however, that in this model no credit market will be active in an equilibrium.
Nevertheless we will follow the tradition and call the right-hand side of (3.2) the
interest rate.
Table 3.1 provides an overview of the notation. As to our timing convention,

notice that any stock variable dated t indicates the amount held at the beginning
of period t. That is, the capital stock accumulated by the end of period t − 1
and available for production in period t is denoted Kt. We therefore write Kt

= (1 − δ)Kt−1 + It−1 and Yt = F (Kt, Lt), where F is an aggregate production
function. In this context it is useful to think of “period t”as running from date t
to date t+ 1. So period t is the time interval [t, t+ 1) on a continuous time axis.
Still, all decisions are made at discrete points in time t = 0, 1, 2, ... (“dates”). We
imagine that receipts for work and lending as well as payment for the consumption
in period t occur at the end of the period. These timing conventions are common
in discrete-time growth and business cycle theory;3 they are convenient because
they make switching between discrete and continuous time analysis fairly easy.

3In contrast, in accounting and finance literature, typically Kt would denote the end-of-
period-t stock that begins to yield its services next period.
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Table 3.1. List of main variable symbols
Symbol Meaning
Lt the number of young people in period t
n generation growth rate
Kt aggregate capital available in period t
c1t consumption as young in period t
c2t consumption as old in period t
wt real wage in period t
rt real interest rate (from end of per. t− 1 to end of per. t)
ρ rate of time preference (impatience)
θ elasticity of marginal utility
st saving of each young in period t
Yt aggregate output in period t

Ct = c1tLt + c2tLt−1 aggregate consumption in period t
St = Yt − Ct aggregate gross saving in period t
δ ∈ [0, 1] capital depreciation rate

Kt+1 −Kt = It − δKt aggregate net investment in period t

3.3 The saving by the young

Suppose the preferences of the young can be represented by the lifetime utility
function specified in (3.3). Given wt and rt+1, the decision problem of the young
in period t then is:

max
c1t,c2t+1

U(c1t, c2t+1) = u(c1t) + (1 + ρ)−1u(c2t+1) s.t. (3.3)

c1t + st = wt (wt > 0), (3.4)

c2t+1 = (1 + rt+1)st (rt+1 > −1), (3.5)

c1t ≥ 0, c2t+1 ≥ 0. (3.6)

The interpretation of the variables is given in Table 3.1 above. We may think
of the “young”as a household consisting of one adult and 1 + n children whose
consumption is included in c1t. Note that “utility”appears at two levels. There
is a lifetime utility function, U, and a period utility function, u.4 The latter is
assumed to be the same in both periods of life (this has no effects on the qualita-
tive results and simplifies the exposition). The period utility function is assumed
continuous and twice continuously differentiable with u′ > 0 and u′′ < 0 (positive,
but diminishing marginal utility of consumption). Many popular specifications

4Other names for these two functions are the intertemporal utility function and the subutility
function, respectively.
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of u, e.g., u(c) = ln c, have the property that limc→0 u(c) = −∞; then we define
u(0) = −∞.
The parameter ρ is called the rate of time preference. It acts as a utility

discount rate, whereas (1 + ρ)−1 is a utility discount factor. Thus ρ indicates the
degree of impatience w.r.t. the “arrival”of utility. By definition, ρ > −1, but
ρ > 0 is often assumed. When preferences can be represented in this additive way,
they are called time-separable. In principle, as seen from period t the interest rate
appearing in (3.5) should be interpreted as an expected real interest rate. But
as long as we assume perfect foresight, there is no need to distinguish between
actual and expected magnitudes.

Box 3.1. Discount rates and discount factors

By a discount rate is meant an interest rate applied in the construction of a dis-
count factor. A discount factor is a factor by which future benefits or costs, mea-
sured in some unit of account, are converted into present equivalents. The higher
the discount rate the lower the discount factor.

One should bear in mind that a discount rate depends on what is to be dis-
counted. In (3.3) the unit of account is “utility”and ρ acts as a utility discount rate.
In (3.7) the unit of account is the consumption good and rt+1 acts as a consump-
tion discount rate. If people also work as old, the right-hand side of (3.7) would
read wt + (1 + rt+1)−1wt+1 and thus rt+1 would act as an earnings discount rate.
This will be the same as the consumption discount rate if we think of real income
measured in consumption units. But if we think of nominal income, that is, income
measured in monetary units, there would be a nominal earnings discount rate,
namely the nominal interest rate, which in an economy with inflation will exceed
the consumption discount rate. Unfortunately, confusion of different discount rates
is not rare.

In (3.5) the interest rate rt+1 acts as a (net) rate of return on saving.5 An
interest rate may also be seen as a discount rate relating to consumption over time.
Indeed, by isolating st in (3.5) and substituting into (3.4), we may consolidate

5While st in (3.4) appears as a flow (non-consumed income), in (3.5) st appears as a stock
(the accumulated financial wealth at the end of period t). This notation is legitimate because
the magnitude of the two is the same when the time unit is the same as the period length.
In real life the gross payoff of individual saving may sometimes be nil (if invested in a project

that completely failed). Unless otherwise indicated, it is in this book understood that an interest
rate is a number exceeding −1 as indicated in (3.5). Thereby the discount factor 1/(1 + rt+1)
is well-defined. In general equilibrium, the condition 1 + rt+1 > 0 is always met in the present
model.
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the two period budget constraints of the individual into one budget constraint,

c1t +
1

1 + rt+1

c2t+1 = wt. (3.7)

In this intertemporal budget constraint the interest rate appears as the discount
rate entering the discount factor converting future amounts of consumption into
present equivalents, cf. Box 3.1.

Solving the saving problem

To avoid the possibility of corner solutions, we impose the No Fast Assumption

lim
c→0

u′(c) =∞. (A1)

In view of the sizeable period length in the model, this is definitely plausible.
Inserting the two budget constraints into the objective function in (3.3), we get

U(c1t, c2t+1) = u(wt−st) +(1+ρ)−1u((1+rt+1)st) ≡ Ũt(st), a function of only one
decision variable, st. According to the non-negativity constraint on consumption
in both periods, (3.6), st must satisfy 0 ≤ st ≤ wt. Maximizing w.r.t. st gives
the first-order condition

dŨt
dst

= −u′(wt − st) + (1 + ρ)−1u′((1 + rt+1)st)(1 + rt+1) = 0. (FOC)

The second derivative of Ũt is

d2Ũt
ds2

t

= u′′(wt − st) + (1 + ρ)−1u′′((1 + rt+1)st)(1 + rt+1)2 < 0. (SOC)

Hence there can at most be one st satisfying (FOC). Moreover, for a positive
wage income there always exists such an st. Indeed:

LEMMA 1 Let wt > 0 and suppose the No Fast Assumption (A1) applies. Then
the saving problem of the young has a unique solution st = s(wt, rt+1). The
solution is interior, i.e., 0 < st < wt, and st satisfies (FOC).

Proof. Assume (A1). For any s ∈ (0, wt), dŨt(s)/ds > −∞. Now consider the
endpoints s = 0 and s = wt. By (FOC) and (A1),

lim
s→0

dŨt
ds

= −u′(wt) + (1 + ρ)−1(1 + rt+1) lim
s→0

u′((1 + rt+1)s) =∞,

lim
s→w

dŨt
ds

= − lim
s→wt

u′(wt − s) + (1 + ρ)−1(1 + rt+1)u′((1 + rt+1)wt) = −∞.
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By continuity of Ũt, it follows that there exists an st ∈ (0, wt) such that at s = st,
dŨt/ds = 0; This is an application of the intermediate value theorem. It follows
that (FOC) holds for this st. By (SOC), st is unique and can therefore be written
as an implicit function, s(wt, rt+1), of the exogenous variables in the problem, wt
and rt+1. �
Inserting the solution for st into the two period budget constraints, (3.4) and

(3.5), immediately gives the optimal consumption levels, c1t and c2t+1.
The simple optimization method we have used here is called the substitution

method : by substitution of the constraints into the objective function an uncon-
strained maximization problem is obtained.6

The consumption Euler equation

The first-order condition (FOC) can conveniently be written

u′(c1t) = (1 + ρ)−1u′(c2t+1)(1 + rt+1). (3.8)

This is known as an Euler equation, after the Swiss mathematician L. Euler (1707-
1783) who was the first to study dynamic optimization problems. In the present
context the condition is called a consumption Euler equation.
Intuitively, in an optimal plan the marginal utility cost of saving must equal

the marginal utility benefit obtained by saving. The marginal utility cost of
saving is the opportunity cost (in terms of current utility) of saving one more
unit of account in the current period (approximately). This one unit of account
is transferred to the next period with interest so as to result in 1 + rt+1 units of
account in that period. An optimal plan requires that the utility cost equals the
utility benefit of having rt+1 more units of account in the next period. And this
utility benefit is the discounted value of the extra utility that can be obtained
next period through the increase in consumption by rt+1 units.
It may seem odd to attempt an intuitive interpretation this way, that is, in

terms of “utility units”. The utility concept is just a convenient mathematical de-
vice used to represent the assumed preferences. Our interpretation is only meant
as an as-if interpretation: as if utility were something concrete. An interpretation
in terms of concrete measurable quantities goes like this. We rewrite (3.8) as

u′(c1t)

(1 + ρ)−1u′(c2t+1)
= 1 + rt+1. (3.9)

The left-hand side measures the marginal rate of substitution, MRS, of consump-
tion as old for consumption as young, evaluated at the point (c1, c2). MRS is

6Alternatively, one could use the Lagrange method.
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defined as the increase in period-t + 1 consumption needed to compensate for a
one-unit marginal decrease in period-t consumption. That is,

MRSc2c1 = −dc2t+1

dc1t

|U=Ū =
u′(c1t)

(1 + ρ)−1u′(c2t+1)
, (3.10)

where we have used implicit differentiation in U(c1t, c2t+1) = Ū . The right-hand
side of (3.9) indicates the marginal rate of transformation, MRT, which is the
rate at which saving allows an agent to shift consumption from period t to period
t+ 1 via the market. In an optimal plan MRS must equal MRT.
Even though interpretations in terms of “MRS equal to MRT”are more sat-

isfactory, we will often use “as if”interpretations like the one before. They are a
convenient short-hand for the more elaborate interpretation.
The Euler equation (3.8) implies that

ρ Q rt+1 causes u′(c1t) R u′(c2t+1), i.e., c1t Q c2t+1,

respectively, in the optimal plan (because u′′ < 0). That is, absent uncertainty
the optimal plan entails either increasing, constant or decreasing consumption
over time according to whether the rate of time preference is below, equal to, or
above the market interest rate, respectively. For example, when ρ < rt+1, the
plan is to start with relatively low consumption in order to take advantage of the
relatively high rate of return on saving.
Note that there are infinitely many pairs (c1t, c2t+1) satisfying the Euler equa-

tion (3.8). Only when requiring the two period budget constraints, (3.4) and
(3.5), satisfied, do we get the unique solution st and thereby the unique solution
for c1t and c2t+1.

Properties of the saving function

The first-order condition (FOC), where the two budget constraints are inserted,
determines the saving as an implicit function of the market prices faced by the
young decision maker, i.e., st = s(wt, rt+1).
The partial derivatives of this function can be found by applying the implicit

function theorem on (FOC). A practical procedure is the following. We first write
dŨt/dst as a function, f, of the variables involved, st, wt, and rt+1, i.e.,

dŨt
dst

= −u′(wt − st) + (1 + ρ)−1u′((1 + rt+1)st)(1 + rt+1) ≡ f(st, wt, rt+1).

By (FOC), f(st, wt, rt+1) = 0 and so the implicit function theorem (see Math
tools) implies

∂st
∂wt

= −∂f/∂wt
D

and
∂st
∂rt+1

= −∂f/∂rt+1

D
,
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where D ≡ ∂f/∂st ≡ d2Ũt/ds
2
t < 0 by (SOC). We find

∂f

∂wt
= −u′′(c1t) > 0,

∂f

∂rt+1

= (1 + ρ)−1 [u′(c2t+1) + u′′(c2t+1)st(1 + rt+1)] .

Consequently, the partial derivatives of the saving function st = s(wt, rt+1) are

sw ≡ ∂st
∂wt

=
u′′(c1t)

D
> 0 (but < 1), (3.11)

sr ≡
∂st
∂rt+1

= −(1 + ρ)−1[u′(c2t+1) + u′′(c2t+1)c2t+1]

D
, (3.12)

where in the last expression we have used (3.5).7

We see that 0 < sw < 1, which implies that 0 < ∂c1t/∂wt < 1 and 0< ∂c2t/∂wt
< 1 + rt+1. The positive sign of these two derivatives indicate that consumption
in each of the periods is a normal good (which certainly is plausible since we are
talking about the total consumption by the individual in each period).8 The sign
of sr is seen to be ambiguous. This ambiguity reflects that the Slutsky substi-
tution and income effects on consumption as young of a rise in the interest rate
are of opposite signs. To understand this, it is useful to keep the intertempo-
ral budget constraint, (3.7), in mind. The substitution effect on c1t is negative
because the higher interest rate makes future consumption cheaper in terms of
current consumption. And the income effect on c1t is positive because with a
higher interest rate, a given budget can buy more consumption in both periods,
cf. (3.7). Generally there would be a third Slutsky effect, a wealth effect of a
rise in the interest rate. But such an effect is ruled out in this model. This is
because there is no labor income in the second period of life. Indeed, as indicated

7A perhaps more straightforward procedure, not requiring full memory of the exact content
of the implicit function theorem, is based on “implicit differentiation”. First, keeping rt+1 fixed,
one calculates the total derivative w.r.t. wt on both sides of (FOC). Next, keeping wt fixed,
one calculates the total derivative w.r.t. rt+1 on both sides of (FOC).
Yet another possible procedure is based on “total differentiation” in terms of differentials.

Taking the differential w.r.t. st, wt, and rt+1 on both sides of (FOC) gives −u′′(c1t)(dwt−dst)+
+(1+ρ)−1·{u′′(c2t+1) [(1 + rt+1)dst + stdrt+1] (1 + rt+1) + u′(c2t+1)drt+1} = 0. By rearranging
we find the ratios dst/dwt and dst/drt+1, which will indicate the value of the partial derivatives
(3.11) and (3.12).

8Recall, a consumption good is called normal for given consumer preferences if the demand
for it is an increasing function of the consumer’s wealth. Since in this model the consumer is
born without any financial wealth, the consumer’s wealth at the end of period t is simply the
present value of labor earnings through life, which here, evaluated at the beginning of period t,
is wt/(1 + rt) as there is no labor income in the second period of life, cf. (3.7).
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by (3.4), the human wealth of a member of generation t, evaluated at the end of
period t, is simply wt, which is independent of rt+1.
Rewriting (3.12) gives

sr =
(1 + ρ)−1u′(c2t+1)[θ(c2t+1)− 1]

D
T 0 for θ(c2t+1) S 1, (3.13)

respectively, whereD < 0, and where θ(c2t+1) is the absolute elasticity of marginal
utility of consumption in the second period, that is,

θ(c2t+1) ≡ − c2t+1

u′(c2t+1)
u′′(c2t+1) ≈ −∆u′(c2t+1)/u′(c2t+1)

∆c2t+1/c2t+1

> 0,

where the approximation is valid for a “small” increase, ∆c2t+1, in c2t+1. The
inequalities in (3.13) show that when the absolute elasticity of marginal utility is
below one, then the substitution effect on consumption as young of an increase in
the interest rate dominates the income effect and saving increases. The opposite
is true if the elasticity of marginal utility is above one.
The reason that θ(c2t+1) has this role is that θ(c2t+1) reflects how sensitive

marginal utility of c2t+1 is to a rise in c2t+1. To see the intuition, consider the
case where consumption as young, and thus saving, happens to be unaffected by
an increase in the interest rate. Even in this case, consumption as old, c2t+1, is
automatically increased (in view of the higher income as old through the higher
rate of return on the unchanged saving); and the marginal utility of c2t+1 is thus
decreased in response to a higher interest rate. The point is that this outcome can
only be optimal if the elasticity of marginal utility of c2t+1 is of “medium”size.
A very high absolute elasticity of marginal utility of c2t+1 would result in a sharp
decline in marginal utility − so sharp that not much would be lost by dampening
the automatic rise in c2t+1 and instead increase c1t, thus reducing saving. On the
other hand, a very low elasticity of marginal utility of c2t+1 would result in only a
small decline in marginal utility − so small that it is beneficial to take advantage
of the higher rate of return and save more, thus accepting a first-period utility
loss brought about by a lower c1t.
We see from (3.12) that an absolute elasticity of marginal utility equal to

exactly one is the case leading to the interest rate being neutral vis-a-vis the
saving of the young. What is the intuition behind this? Neutrality vis-a-vis
the saving of the young of a rise in the interest rate requires that c1t remains
unchanged since c1t = wt − st. In turn this requires that the marginal utility,
u′(c2t+1), on the right-hand side of (3.8) falls by the same percentage as 1 + rt+1

rises. At the same time the budget (3.5) as old tells us that c2t+1 has to rise by
the same percentage as 1+rt+1 if st remains unchanged. Altogether we thus need
that u′(c2t+1) falls by the same percentage as c2t+1 rises. But this requires that
the absolute elasticity of u′(c2t+1) w.r.t. c2t+1 is exactly one.
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The elasticity of marginal utility, also called the marginal utility flexibility,
will generally depend on the level of consumption, as implicit in the notation
θ(c2t+1). There exists a popular special case, however, where the elasticity of
marginal utility is constant.

EXAMPLE 1 The CRRA utility function. If we impose the requirement that
u(c) should have an absolute elasticity of marginal utility of consumption equal
to a constant θ > 0, then one can show (see Appendix A) that the utility function
must be of the CRRA form:

u(c) =

{
c1−θ−1

1−θ , when θ 6= 1,

ln c, when θ = 1.
, (3.14)

It may seem odd that in the upper case we subtract the constant 1/(1 − θ)
from c1−θ/(1 − θ). But adding or subtracting a constant from a utility function
does not affect the marginal rate of substitution and consequently not behavior.
Notwithstanding that we could do without this constant, its presence in (3.14)
has two advantages. One is that in contrast to c1−θ/(1 − θ), the expression
(c1−θ − 1)/(1− θ) can be interpreted as valid even for θ = 1, namely as identical
to ln c. This is because (c1−θ − 1)/(1 − θ) → ln c for θ → 1 (by L’Hôpital’s
rule for “0/0”). Another advantage is that the kinship between the different
members, indexed by θ, of the CRRA family becomes more transparent. Indeed,
by defining u(c) as in (3.14), all graphs of u(c) will go through the same point as
the log function, namely (1, 0), cf. Fig. 3.2.
The higher is θ, the more “curvature”does the corresponding curve in Fig. 3.2

have. In turn, more “curvature”reflects a higher incentive to smooth consumption
across time. The reason is that a large curvature means that the marginal utility
will drop sharply if consumption rises and will increase sharply if consumption
falls. Consequently, not much utility is lost by lowering consumption when it
is relatively high but there is a lot of utility to be gained by raising it when it
is relatively low. So the curvature θ indicates the degree of aversion towards
variation in consumption. Or we may say that θ indicates the strength of the
preference for consumption smoothing.9 �
Suppose the period utility is of CRRA form as given in (3.14). (FOC) then

yields an explicit solution for the saving of the young:

st =
1

1 + (1 + ρ)(1+rt+1

1+ρ
)
θ−1
θ

wt. (3.15)

9The name CRRA is a shorthand for Constant Relative Risk Aversion and comes from the
theory of behavior under uncertainty. Also in that theory does the CRRA function constitute an
important benchmark case. And θ is in that context called the degree of relative risk aversion.
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Figure 3.2: The CRRA family of utility functions.

We see that the signs of ∂st/∂wt and ∂st/∂rt+1 shown in (3.11) and (3.13), re-
spectively, are confirmed. Moreover, the saving of the young is in this special
case proportional to income with a factor of proportionality that depends on the
interest rate (as long as θ 6= 1). But in the general case the saving-income ratio
depends also on the income level.

A major part of the attempts at empirically estimating θ suggests that θ > 1.
Based on U.S. data, Hall (1988) provides estimates above 5, while Attanasio and
Weber (1993) suggest 1.25 ≤ θ ≤ 3.33. For Japanese data Okubo (2011) suggests
2.5 ≤ θ ≤ 5.0. As these studies relate to much shorter time intervals than the
implicit time horizon of about 2×30 years in the Diamond model, we should be
cautious. But if the estimates were valid also to that model, we should expect
the income effect on current consumption of an increase in the interest rate to
dominate the substitution effect, thus implying sr < 0 as long as there is no
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3.3. The saving by the young 79

wealth effect of a rise in the interest rate.
When the elasticity of marginal utility of consumption is a constant, θ, its

inverse, 1/θ, equals the elasticity of intertemporal substitution in consumption.
This concept refers to the willingness to substitute consumption over time when
the interest rate changes. Under certain conditions the elasticity of intertemporal
substitution reflects the elasticity of the ratio c2t+1/c1t w.r.t. 1 + rt+1 when we
move along a given indifference curve. The next subsection, which can be omitted
in a first reading, goes more into detail with the concept.

Digression: The elasticity of intertemporal substitution*

Consider a two-period consumption problem like the one above. Fig. 3.3 depicts
a particular indifference curve, u(c1) + (1 + ρ)−1u(c2) = Ū . At a given point,
(c1, c2), on the curve, the marginal rate of substitution of period-2 consumption
for period-1 consumption, MRS, is given by

MRS = −dc2

dc1

|U=Ū ,

that is,MRS at the point (c1, c2) is the absolute value of the slope of the tangent
to the indifference curve at that point.10 Under the “normal” assumption of
“strictly convex preferences” (as for instance in the Diamond model), MRS is
rising along the curve when c1 decreases (and thereby c2 increases). Conversely,
we can let MRS be the independent variable and consider the corresponding
point on the indifference curve, and thereby the ratio c2/c1, as a function of
MRS. If we raise MRS along the indifference curve, the corresponding value of
the ratio c2/c1 will also rise.
The elasticity of intertemporal substitution in consumption at a given point is

defined as the elasticity of the ratio c2/c1 w.r.t. the marginal rate of substitution
of c2 for c1, when we move along the indifference curve through the point (c1, c2).
Letting the elasticity w.r.t. x of a differentiable function f(x) be denoted E`xf(x),
the elasticity of intertemporal substitution in consumption can be written

E`MRS
c2

c1

=
MRS

c2/c1

d (c2/c1)

dMRS
|U=Ū ≈

∆(c2/c1)
c2/c1

∆MRS
MRS

,

where the approximation is valid for a “small”increase, ∆MRS, in MRS.
A more concrete understanding is obtained when we take into account that

in the consumer’s optimal plan, MRS equals the ratio of the discounted prices

10When the meaning is clear from the context, to save notation we just write MRS instead
of the more precise MRSc2c1 .
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Figure 3.3: Substitution of period 2-consumption for period 1-consumption as MRS
increases to MRS′.

of good 1 and good 2, that is, the ratio 1/(1/(1 + r)) given in (3.7). Indeed, from
(3.10) and (3.9), omitting the time indices, we have

MRS = −dc2

dc1

|U=Ū =
u′(c1)

(1 + ρ)−1u′(c2)
= 1 + r ≡ R. (3.16)

Letting σ(c1, c2) denote the elasticity of intertemporal substitution, evaluated at
the point (c1, c2), we then have

σ(c1, c2) =
R

c2/c1

d (c2/c1)

dR
|U=Ū ≈

∆(c2/c1)
c2/c1
∆R
R

. (3.17)

Consequently, the elasticity of intertemporal substitution can here be interpreted
as the approximate percentage increase in the consumption ratio, c2/c1, triggered
by a one percentage increase in the inverse price ratio, holding the utility level
unchanged.11

Given u(c), we let θ(c) be the absolute elasticity of marginal utility of con-
sumption, i.e., θ(c) ≡ −cu′′(c)/u′(c). As shown in Appendix B, we then find the
elasticity of intertemporal substitution to be

σ(c1, c2) =
c2 +Rc1

c2θ(c1) +Rc1θ(c2)
. (3.18)

11This characterization is equivalent to saying that the elasticity of substitution between two
consumption goods indicates the approximate percentage decrease in the ratio of the chosen
quantities of the goods (when moving along a given indifference curve) induced by a one-
percentage increase in the corresponding price ratio.
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We see that if u(c) belongs to the CRRA class and thereby θ(c1) = θ(c2) = θ,
then σ(c1, c2) = 1/θ. In this case (as well as whenever c1 = c2) the elasticity of
marginal utility and the elasticity of intertemporal substitution are simply the
inverse of each other.

3.4 Production

Output is homogeneous and can be used for consumption as well as investment
in physical capital. The capital stock is thereby just accumulated non-consumed
output. We may imagine a “corn economy”where output is corn, part of which
is eaten (flour) while the remainder is accumulated as capital (seed corn).
The specification of technology and production conditions follows the sim-

ple competitive one-sector setup discussed in Chapter 2. Although the Diamond
model is a long-run model, we shall in this chapter for simplicity ignore techno-
logical change.

The representative firm

There is a representative firm with a neoclassical production function and con-
stant returns to scale (CRS). Omitting the time argument t when not needed for
clarity, we have

Y = F (K,L) = LF (k, 1) ≡ Lf(k), f ′ > 0, f ′′ < 0, (3.19)

where Y is output (GNP) per period, K is capital input, L is labor input, and
k ≡ K/L is the capital-labor ratio. The derived function, f, is the production
function in intensive form. Capital installation and other adjustment costs are
ignored. Hence profit is Π ≡ F (K,L)− r̂K − wL. The firm maximizes Π under
perfect competition. This gives, first, ∂Π/∂K = FK (K,L)− r̂ = 0, that is,

FK (K,L) =
∂ [Lf (k)]

∂K
= f ′ (k) = r̂. (3.20)

Second, ∂Π/∂L = FL (K,L)− w = 0, that is,

FL (K,L) =
∂ [Lf (k)]

∂L
= f (k)− kf ′ (k) = w. (3.21)

The interpretation is that the firm will in every period use capital up to the point
where the marginal productivity of capital equals the rental rate given from the
market. Similarly, the firm will employ labor up to the point where the marginal
productivity of labor equals the wage rate given from the market.
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In view of f ′′ < 0, a k > 0 satisfying (3.20) is unique. Let us call it the
desired capital-labor ratio. Owing to CRS, however, at this stage the separate
factor inputs, K and L, are indeterminate; only their ratio, k, is determinate.12

We will now see how the equilibrium conditions for the factor markets select the
factor prices and the level of factor inputs consistent with equilibrium.

Factor prices in equilibrium

Let the aggregate demand for capital services and labor services be denoted Kd

and Ld, respectively. Clearing in factor markets in period t implies

Kt
d = Kt, (3.22)

Lt
d = Lt = L0(1 + n)t, (3.23)

whereKt is the aggregate supply of capital services and Lt the aggregate supply of
labor services. As was called attention to in Chapter 1, unless otherwise specified
it is understood that the rate of utilization of each production factor is constant
over time and normalized to one. So the quantityKt will at one and the same time
measure both the capital input, a flow, and the available capital stock. Similarly,
the quantity Lt will at one and the same time measure both the labor input, a
flow, and the size of the labor force as a stock (= the number of young people).
The aggregate input demands, Kd and Ld, are linked through the desired

capital-labor ratio, kd. In equilibrium we have Kd
t /L

d
t = kt

d = Kt/Lt ≡ kt, by
(3.22) and (3.23). The k in (3.20) and (3.21) can thereby be identified with the
ratio of the stock supplies, kt ≡ Kt/Lt > 0, which is a predetermined variable.
Interpreted this way, (3.20) and (3.21) determine the equilibrium factor prices r̂t
and wt in each period. In view of the no-arbitrage condition (3.2), the real interest
rate satisfies rt = r̂t − δ, where δ is the capital depreciation rate, 0 ≤ δ ≤ 1, and
so in equilibrium we end up with

rt = f ′(kt)− δ ≡ r(kt) (r′(kt) = f ′′(kt) < 0), (3.24)

wt = f(kt)− ktf ′(kt) ≡ w(kt) (w′(kt) = −ktf ′′(kt) > 0), (3.25)

where causality is from the right to the left in the two equations. In line with
our general perception of perfect competition, cf. Section 2.4 of Chapter 2, it is
understood that the factor prices, r̂t and wt, adjust quickly to the market-clearing
levels.
12It might seem that k is overdetermined because we have two equations, (3.20) and (3.21),

but only one unknown. This reminds us that for arbitrary factor prices, r̂ and w, there will not
exist a k satisfying both (3.20) and (3.21). But in equilibrium the factor prices faced by the
firm are not arbitrary. They are equilibrium prices, i.e., they are adjusted so that (3.20) and
(3.21) become consistent.
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Technical Remark. In these formulas it is understood that L > 0, but we may
allowK = 0, i.e., k = 0. In case f ′(0) is not immediately well-defined, we interpret
f ′(0) as limk→0+ f ′(k) if this limit exists. If it does not, it must be because
we are in a situation where limk→0+ f ′(k) = ∞, since f ′′(k) < 0 (an example
is the Cobb-Douglas function, f(k) = Akα, 0 < α < 1, where limk→0+ f ′(k)
= limk→0+ Aαkα−1 = +∞). In this situation we simply include +∞ in the range
of r(k) and define r(0) · 0 ≡ limk→0+(f ′(k) − δ)k = 0, where the last equality
comes from the general property of a neoclassical CRS production function that
limk→0+ kf ′(k) = 0, cf. (2.18) of Chapter 2. Letting r(0) · 0 = 0 also fits well
with intuition since, when k = 0, nobody receives capital income anyway. Note
that since δ ∈ [0, 1] , r(k) > −1 for all k ≥ 0. What about w(0)? We interpret
w(0) as limk→0w(k). From (2.18) of Chapter 2 we have that limk→0+ w(k) = f(0)
≡ F (0, 1) ≥ 0. If capital is essential, F (0, 1) = 0. Otherwise, F (0, 1) > 0. Finally,
since w′ > 0, we have, for k > 0, w(k) > 0 as also noted in Chapter 2. �

To fix ideas we have assumed that households (here the old) own the physical
capital and rent it out to the firms. In view of perfect competition and constant
returns to scale, pure profit is nil in equilibrium. As long as the model ignores
uncertainty and capital installation costs, the results will be unaffected if instead
we let the firms themselves own the physical capital and finance capital investment
by issuing bonds and shares. These bonds and shares would then be accumulated
by the households and constitute their financial wealth instead of the capital
goods themselves. The equilibrium rate of return, rt, would be the same.

3.5 The dynamic path of the economy

As in other fields of economics, it is important to distinguish between the set of
technically feasible allocations and an allocation brought about, within this set,
by a specific economic institution (the rules of the game). The economic institu-
tion assumed by the Diamond model is the private-ownership perfect-competition
market institution.

We shall in the next subsections introduce three different concepts concerning
allocations over time in this economy. The three concepts are: technically feasible
paths, temporary equilibrium, and equilibrium path. These concepts are mutually
related in the sense that there is a whole set of technically feasible paths, within
which there may exist a unique equilibrium path, which in turn is a sequence of
states that have certain properties, including the temporary equilibrium property.
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3.5.1 Technically feasible paths

When we speak of technically feasible paths, the focus is merely upon what is
feasible from the point of view of the given technology as such and available initial
resources. That is, we disregard the agents’preferences, their choices given the
constraints, their interactions in markets, the market forces etc.
The technology is represented by (3.19) and there are two exogenous resources,

the labor force, Lt = L0(1 + n)t, and the initial capital stock, K0. From na-
tional income accounting aggregate consumption can be written Ct ≡ Yt − St =
F (Kt, Lt) − St, where St denotes aggregate gross saving, and where we have
inserted (3.19). In a closed economy aggregate gross saving equals (ex post)
aggregate gross investment, Kt+1 −Kt + δKt. So

Ct = F (Kt, Lt)− (Kt+1 −Kt + δKt). (3.26)

Let ct denote aggregate consumption per unit of labor in period t, i.e.,

ct ≡
Ct
Lt

=
c1tLt + c2tLt−1

Lt
= c1t +

c2t

1 + n
.

Combining this with (3.26) and using the definitions of k and f(k), we obtain the
dynamic resource constraint of the economy:

c1t +
c2t

1 + n
= f(kt) + (1− δ)kt − (1 + n)kt+1. (3.27)

DEFINITION 1 Let k̄0 ≥ 0 be the historically given initial ratio of available
capital and labor. The path {(kt, c1t, c2t)}∞t=0 is called technically feasible if it has
k0 = k̄0 and for all t = 0, 1, 2,. . . , (3.27) has kt ≥ 0, c1t ≥ 0, and c2t ≥ 0.

The next subsections consider how, for given household preferences, the private-
ownership market institution with profit-maximizing firms under perfect competi-
tion generates a selection within the set of technically feasible paths. A member
of this selection (which may but need not have just one member) is called an
equilibrium path. It constitutes a sequence of states with certain properties, one
of which is the temporary equilibrium property.

3.5.2 A temporary equilibrium

Standing in a given period, it is natural to think of next period’s interest rate as
an expected interest rate that provisionally can deviate from the ex post realized
one. We let ret+1 denote the expected real interest rate of period t + 1 as seen
from period t.
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Essentially, by a temporary equilibrium in period t is meant a state where for
a given ret+1, all markets clear in the period. There are three markets, namely
two factor markets and a market for produced goods. We have already described
the two factor markets. In the market for produced goods the representative firm
supplies the amount Y s

t = F (Kd
t , L

d
t ) in period t. The demand side in this market

has two components, consumption, Ct, and gross investment, It. Equilibrium in
the goods market requires that demand equals supply, i.e.,

Ct + It = c1tLt + c2tLt−1 + It = Y s
t = F (Kd

t , L
d
t ), (3.28)

where consumption by the young and old, c1t and c2t, respectively, were deter-
mined in Section 3.
By definition, aggregate gross investment equals aggregate net investment,

INt , plus capital depreciation, i.e.,

It = INt + δKt ≡ IN1t + IN2t + δKt ≡ SN1t +SN2t + δKt = stLt + (−Kt) + δKt. (3.29)

The first equality follows from the definition of net investment and the assump-
tion that capital depreciation equals δKt. Next comes an identity reflecting that
aggregate net investment is the sum of net investment by the young and net in-
vestment by the old. In turn, saving in this model is directly an act of acquiring
capital goods. So the net investment by the young, IN1t , and the old, I

N
2t , are

identical to their net saving, SN1t and S
N
2t , respectively. As we have shown, the

net saving by the young in the model equals stLt. And the net saving by the
old is negative and equals −Kt. Indeed, because they have no bequest motive,
the old consume all they have and leave nothing as bequests. Hence, the young
in any period enter the period with no non-human wealth. Consequently, any
non-human wealth existing at the beginning of a period must belong to the old
in that period and be the result of their saving as young in the previous period.
As Kt constitutes the aggregate non-human wealth in our closed economy at the
beginning of period t, we therefore have

st−1Lt−1 = Kt. (3.30)

Recalling that the net saving of any group is by definition the same as the increase
in its non-human wealth, the net saving of the old in period t is −Kt. Aggregate
net saving in the economy is thus stLt + (−Kt), and (3.29).is thereby explained.

DEFINITION 2 For a given period t with capital stock Kt ≥ 0 and labor supply
Lt > 0, let the expected real interest rate be given as ret+1 > −1.With kt ≡ Kt/Lt,
a temporary equilibrium in period t is a state (kt, c1t, c2t, wt, rt) of the economy
such that (3.22), (3.23), (3.28), and (3.29) hold (i.e., all markets clear) for c1t

= wt − st and c2t = (kt + rtkt)(1 + n), where st = s(wt, r
e
t+1), as defined in
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Lemma 1, while wt = w(kt) > 0 and rt = r(kt), as defined in (3.25) and (3.24),
respectively.

The reason for the requirement wt > 0 in the definition is that if wt = 0,
people would have nothing to live on as young and nothing to save from for
retirement. The system would not be economically viable in this case. With
regard to the equation for c2t in the definition, note that (3.30) gives st−1 =
Kt/Lt−1 = (Kt/Lt)(Lt/Lt−1) = kt(1 + n), which is the wealth of each old at
the beginning of period t. Substituting into c2t = (1 + rt)st−1, we get c2t =
(1 + rt)kt(1 +n), which can also be written c2t = (kt + rtkt)(1 +n). This last way
of writing c2t has the advantage of being applicable even if kt = 0, cf. Technical
Remark in Section 3.4. The remaining conditions for a temporary equilibrium
are self-explanatory.

PROPOSITION 1 Suppose the No Fast Assumption (A1) applies. Consider a
given period t with a given kt ≥ 0. Then for any ret+1 > −1,

(i) if kt > 0, there exists a temporary equilibrium, (kt, c1t, c2t, wt, rt), and c1t and
c2t are positive;
(ii) if kt = 0, a temporary equilibrium exists if and only if capital is not essential;
in that case, wt = w(kt) = w(0) = f(0) > 0 and c1t and st are positive (while
c2t = 0);

(iii) whenever a temporary equilibrium exists, it is unique.

Proof. We begin with (iii). That there is at most one temporary equilibrium is
immediately obvious since wt and rt are functions of the given kt : wt = w(kt)
and rt = r(kt). And given wt, rt, and ret+1, c1t and c2t are uniquely determined.
(i) Let kt > 0. Then, by (3.25), w(kt) > 0.We claim that the state (kt, c1t, c2t, wt, rt),

with wt = w(kt), rt = r(kt), c1t = w(kt)−s(w(kt), r
e
t+1), and c2t = (1+r(kt))kt(1+

n), is a temporary equilibrium. Indeed, Section 3.4 showed that the factor prices
wt = w(kt) and rt = r(kt) are consistent with clearing in the factor markets in
period t. Given that these markets clear (by price adjustment), it follows by Wal-
ras’law (see Appendix C) that also the third market, the goods market, clears
in period t. So all criteria in Definition 2 are satisfied. That c1t > 0 follows from
w(kt) > 0 and the No Fast Assumption (A1), in view of Lemma 1. That c2t > 0
follows from c2t = (1 + r(kt))kt(1 + n) when kt > 0, since r(kt) > −1 always.
(ii) Let kt = 0. Suppose f(0) > 0. Then, by Technical Remark in Section 3.4,

wt = w(0) = f(0) > 0 and c1t = wt− s(wt, ret+1) is well-defined, positive, and less
than wt, in view of Lemma 1; so st = s(wt, r

e
t+1) > 0. The old in period 0 will

starve since c2t = (0 + 0)(1 + n), in view of r(0) · 0 = 0, cf. Technical Remark in
Section 3.4. Even though this is a bad situation for the old, it is consistent with
the criteria in Definition 2. On the other hand, if f(0) = 0, we get wt = f(0) = 0,
which violates one of the criteria in Definition 2. �
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Point (ii) of the proposition says that a temporary equilibrium may exist even
in a period where k = 0. The old in this period will starve and not survive. But if
capital is not essential, the young get positive labor income out of which they will
save a part for their old age and be able to maintain life also next period which
will be endowed with positive capital. Then, by our assumptions the economy is
viable forever.13

Generally, the term “equilibrium”is used to denote a state of “rest”, possibly
only “temporary rest”. The temporary equilibrium in the present model is an
example of a state of “temporary rest” in the following sense: (a) the agents
optimize, given their expectations and the constraints they face; and (b) the
aggregate demands and supplies in the given period are mutually consistent,
i.e., markets clear. The qualification “temporary”is motivated by two features.
First, in the next period circumstances may be different, among other things as a
consequence of the currently chosen actions. Second, the given expectations may
turn out wrong.

3.5.3 An equilibrium path

The concept of an equilibrium path, also called an intertemporal equilibrium,
requires more conditions satisfied. The concept refers to a sequence of temporary
equilibria such that expectations of the agents are fulfilled in every period:

DEFINITION 3 An equilibrium path is a technically feasible path {(kt, c1t, c2t)}∞t=0

such that for t = 0, 1, 2,. . . , the state (kt, c1t, c2t, wt, rt) is a temporary equilibrium
with ret+1 = r (kt+1).

To characterize such a path, we forward (3.30) one period and rearrange so
as to get

Kt+1 = stLt. (3.31)

Since Kt+1 ≡ kt+1Lt+1 = kt+1Lt(1 + n), this can be written

kt+1 =
s (w (kt) , r (kt+1))

1 + n
, (3.32)

using that st = s(wt, r
e
t+1), wt = w(kt), and ret+1 = rt+1 = r (kt+1) in a sequence of

temporary equilibria with fulfilled expectations. Equation (3.32) is a first-order
difference equation, known as the fundamental difference equation or the law of
motion of the Diamond model.

PROPOSITION 2 Suppose the No Fast Assumption (A1) applies. Then,

13For simplicity, the model ignores that in practice a certain minimum per capita consumption
level (the subsistence minimum) is needed for viability.

c© Groth, Lecture notes in macroeconomics, (mimeo) 2015.



88 CHAPTER 3. THE BASIC OLG MODEL: DIAMOND

(i) for any k0 > 0 there exists at least one equilibrium path;
(ii) if k0 = 0, an equilibrium path exists if and only if f(0) > 0 (i.e., capital not
essential);
(iii) in any case, an equilibrium path has a positive real wage in all periods and
positive capital in all periods except possibly the first;
(iv) an equilibrium path satisfies the first-order difference equation (3.32).

Proof. (i) and (ii): see Appendix D. (iii) For a given t, let kt ≥ 0. Then,
since an equilibrium path is a sequence of temporary equilibria, we have wt =
w(kt) > 0 and st = s(w (kt) , r

e
t+1), where ret+1 = r (kt+1) . Hence, by Lemma 1,

s(w (kt) , r
e
t+1) > 0, which implies kt+1 > 0, in view of (3.32). This shows that

only for t = 0 is kt = 0 possible along an equilibrium path. (iv) This was shown
in the text above. �
The formal proofs of point (i) and (ii) of the proposition are placed in appendix

because they are quite technical. But the graphs in the ensuing figures 3.4-3.7
provide an intuitive verification. The “only if”part of point (ii) reflects the not
very surprising fact that if capital were an essential production factor, no capital
“now”would imply no income “now”, hence no saving and investment and thus no
capital in the next period and so on. On the other hand, the “if”part of point (ii)
says that when capital is not essential, an equilibrium path can set off even from
an initial period with no capital. Then point (iii) adds that an equilibrium path
will have positive capital in all subsequent periods. Finally, as to point (iv), note
that the fundamental difference equation, (3.32), rests on equation (3.31). Recall
from the previous subsection that the economic logic behind this key equation
is that since capital is the only non-human asset in the economy and the young
are born without any inheritance, the aggregate capital stock at the beginning of
period t+ 1 must be owned by the old generation in that period. It must thereby
equal the aggregate saving these people had in the previous period where they
were young.

The transition diagram

To be able to further characterize equilibrium paths, we construct a transition
diagram in the (kt, kt+1) plane. The transition curve is defined as the set of points
(kt, kt+1) satisfying (3.32). Its form and position depends on the households’
preferences and the firms’technology. Fig. 3.4 shows one possible, but far from
necessary configuration of this curve. A complicating circumstance is that the
equation (3.32) has kt+1 on both sides. Sometimes we are able to solve the
equation explicitly for kt+1 as a function of kt, but sometimes we can do so only
implicitly. What is even worse is that there are cases where kt+1 is not unique
for a given kt. We will proceed step by step.
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First, what can we say about the slope of the transition curve? In general a
point on the transition curve has the property that at least in a small neighbor-
hood of this point the equation (3.32) will define kt+1 as an implicit function of
kt.14 Taking the total derivative w.r.t. kt on both sides of (3.32), we get

dkt+1

dkt
=

1

1 + n

(
sww

′ (kt) + srr
′ (kt+1)

dkt+1

dkt

)
. (3.33)

By ordering, the slope of the transition curve within this small neighborhood can
be written

dkt+1

dkt
=

sw (w (kt) , r (kt+1))w′ (kt)

1 + n− sr (w (kt) , r (kt+1)) r′ (kt+1)
, (3.34)

when sr(w(kt), r(kt+1))r′ (kt+1) 6= 1+n. Since sw > 0 and w′(kt) = −kt f ′′(kt) > 0,
the numerator in (3.34) is always positive and we have

dkt+1

dkt
≷ 0 for sr(w(kt), r(kt+1)) ≷ 1 + n

r′ (kt+1)
,

respectively (recall that r′ (kt+1) = f ′′(kt+1) < 0).

Figure 3.4: Transition curve and the resulting dynamics in the log-utility Cobb-Douglas
case.

It follows that the transition curve is universally upward-sloping if and only if
sr(w(kt), r(kt+1)) > (1 + n)/r′ (kt+1) everywhere along the transition curve. The

14An exception occurs if the denominator in (3.34) below vanishes.
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intuition behind this becomes visible by rewriting (3.34) in terms of small changes
in kt and kt+1. Since ∆kt+1/∆kt ≈ dkt+1/dkt for ∆kt “small”, (3.34) implies

[1 + n− sr (·) r′ (kt+1)] ∆kt+1 ≈ sw (·) w′(kt)∆kt. (*)

Let ∆kt > 0. This rise in kt will always raise wage income and, via the resulting
rise in st, raise kt+1, everything else equal. Everything else is not equal, however,
since a rise in kt+1 implies a fall in the rate of interest. There are four cases to
consider:
Case 1: sr (·) = 0. Then there is no feedback effect from the fall in the rate of

interest. So the tendency to a rise in kt+1 is neither offset nor fortified.
Case 2: sr (·) > 0. Then the tendency to a rise in kt+1 will be partly offset

through the dampening effect on saving resulting from the fall in the interest
rate. This negative feedback can not fully offset the tendency to a rise in kt+1.
The reason is that the negative feedback on the saving of the young will only
be there if the interest rate falls in the first place. We cannot in a period have
both a fall in the interest rate triggering lower saving and a rise in the interest
rate (via a lower kt+1) because of the lower saving. So a suffi cient condition for
a universally upward-sloping transition curve is that the saving of the young is a
non-decreasing function of the interest rate.
Case 3: (1 + n)/r′ (kt+1) < sr (·) < 0. Then the tendency to a rise in kt+1 will

be fortified through the stimulating effect on saving resulting from the fall in the
interest rate.
Case 4: sr (·) < (1 + n)/r′ (kt+1) < 0. Then the expression in brackets on

the left-hand side of (*) is negative and requires therefore that ∆kt+1 < 0 in
order to comply with the positive right-hand side. This is a situation of multiple
temporary equilibria, a situation where self-fulfilling expectations operate. We
shall explore this case in the next sub-section.
Another feature of the transition curve is the following:

LEMMA 2 (the transition curve is nowhere flat) For all kt > 0, dkt+1/dkt 6= 0.

Proof. Since sw > 0 and w′(kt) > 0 always, the numerator in (3.34) is always
positive. �
The implication is that no part of the transition curve can be horizontal.15

When the transition curve crosses the 45◦ degree line for some kt > 0, as in
the example in Fig. 3.4, we have a steady state at this kt. Formally:

DEFINITION 4 An equilibrium path {(kt, c1t, c2t)}∞t=0 is in a steady state with
capital-labor ratio k∗ > 0 if the fundamental difference equation, (3.32), is satis-
fied with kt as well as kt+1 replaced by k∗.

15This would not necessarily hold if the utility function were not time-separable.
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This exemplifies the notion of a steady state as a stationary point in a dy-
namic process. Some economists use the term “dynamic equilibrium”instead of
“steady state”. As in this book the term “equilibrium”refers to situations where
the constraints and decided actions of the market participants are mutually com-
patible, an economy can be in “equilibrium”without being in a steady state. A
steady state is seen as a special sequence of temporary equilibria with fulfilled
expectations, namely one with the property that the dynamic variable, here k,
entering the fundamental difference equation does not change over time.

EXAMPLE 2 (the log utility Cobb-Douglas case) Let u(c) = ln c and Y =
AKαL1−α, where A > 0 and 0 < α < 1. Since u(c) = ln c is the case θ = 1
in Example 1, by (3.15) we have sr = 0. Indeed, with logarithmic utility the
substitution and income effects on st offset each other; and, as discussed above,
in the Diamond model there can be no wealth effect of a rise in rt+1. Further,
the equation (3.32) reduces to a transition function,

kt+1 =
(1− α)Akαt

(1 + n)(2 + ρ)
. (3.35)

The associated transition curve is shown in Fig. 3.4 and there is for k0 > 0 both
a unique equilibrium path and a unique steady state with capital-labor ratio

k∗ =

(
(1− α)A

(2 + ρ)(1 + n)

)1/(1−α)

> 0.

At kt = k∗ the slope of the transition curve is necessarily less than one. The
dynamics therefore lead to convergence to the steady state as illustrated in the
figure.16 In the steady state the interest rate is r∗ = f ′(k∗) − δ = α(1 + n)(2 +
ρ)/(1− α)− δ. Note that a higher n results in a lower k∗, hence a higher r∗. �
Because the Cobb-Douglas production function implies that capital is essen-

tial, (3.35) implies kt+1 = 0 if kt = 0. The state kt+1 = kt = 0 is thus a stationary
point of the difference equation (3.35) considered in isolation. This state is not,
however, an equilibrium path as defined above (not a steady state of an economic
system since there is no production). We may call it a trivial steady state in
contrast to the economically viable steady state kt+1 = kt = k∗ > 0 which is then
called a non-trivial steady state.
Theoretically, there may be more than one (non-trivial) steady state. Non-

existence of a steady state is also possible. But before considering these possibil-
ities, the next subsection (which may be skipped in a first reading) addresses an
even more defiant feature which is that for a given k0 there may exist more than
one equilibrium path.

16A formal proof can be based on the mean value theorem.
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The possibility of multiple equilibrium paths*

It turns out that a backward-bending transition curve like that in Fig. 3.5 is
possible within the model. Not only are there two steady states but for kt ∈ (k, k)
there are three temporary equilibria with self-fulfilling expectations. That is, for a
given kt in this interval, there are three different values of kt+1 that are consistent
with self-fulfilling expectations. Exercise 3.3 at the end of the chapter documents
this possibility by way of a numerical example.

Figure 3.5: A backward-bending transition curve leads to multiple temporary equilibria
with self-fulfilling expectations.

The theoretical possibility of multiple equilibria with self-fulfilling expecta-
tions requires that there is at least one interval on the horizontal axis where a
section of the transition curve has negative slope. Let us see if we can get an
intuitive understanding of why in this situation multiple equilibria can arise. Con-
sider the specific configuration in Fig. 3.5 where k′, k′′, and k′′′ are the possible
values for the capital-labor ratio next period when kt ∈ (k, k). In a neighbor-
hood of the point P associated with the intermediate value, k′′, the slope of the
transition curve is negative. As we saw above, this requires not only that in this
neighborhood sr(wt, r(kt+1)) < 0, but that the stricter condition sr(wt, r(kt+1))
< (1 + n)/f ′′(k′′) holds (we take wt as given since kt is given and wt = w(kt)).
That the point P with coordinates (kt, k

′′) is on the transition curve indicates that
given wt = w(kt) and an expected interest rate ret+1 = r(k′′), the induced saving
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by the young, s(wt, r(k′′), will be such that kt+1 = k′′, that is, the expectation
is fulfilled. The fact that also the point (kt, k

′), where k′ > k′′, is on transition
curve indicates that also a lower interest rate, r(k′), can be self-fulfilling. By this
is meant that if an interest rate at the level r(k′) is expected, then this expecta-
tion induces more saving by the young, just enough more to make kt+1 = k′ > k′′,
thus confirming the expectation of the lower interest rate level r(k′).What makes
this possible is exactly the negative dependency of st on ret+1. The fact that also
the point (kt, k

′′′), where k′′′ < k′′, is on the transition curve can be similarly
interpreted. It is also sr < 0 that makes it possible that less saving by the young
than at P can be induced by an expected higher interest rate, r(k′′′), than at P.
These ambiguities point to a serious problem with the assumption of perfect

foresight. The model presupposes that all the young agree in their expectations.
Only then will one of the three mentioned temporary equilibria appear. But the
model is silent about how the needed coordination of expectations is brought
about, and if it is, why this coordination ends up in one rather than another of
the three possible equilibria with self-fulfilling expectations. Each single young is
isolated in the market and will not know what the others will expect. The market
mechanism in the model provides no coordination of expectations. As it stands,
the model cannot determine how the economy will evolve in this situation.
This is of course a weakness. Yet the encountered phenomenon itself − that

multiple self-fulfilling equilibrium paths are theoretically possible − is certainly
of interest and plays an important role in certain business cycle theories of booms
and busts.
For now we plainly want to circumvent non-uniqueness. There are at least

two ways to rule out the possibility of multiple equilibrium paths. One simple
approach is to discard the assumption of perfect foresight. Instead, some kind
of adaptive expectations may be assumed, for example in the form of myopic
foresight, also called static expectations. This means that the expectation formed
by the agents in the current period about the value of a variable next period
is that it will stay the same as in the current period. So here the assumption
would be that the young have the expectation ret+1 = rt. Then, given k0 > 0,
a unique sequence of temporary equilibria {(kt, c1t, c2t, wt, rt)}∞t=0 is generated by
the model. Oscillations in the sense of repetitive movements up and down of kt
are possible. Even chaotic trajectories are possible (see Exercise 3.6).
Outside steady state the agents will experience that their expectations are

systematically wrong. And the assumption of myopic foresight rules out that
learning occurs. This may be too simplistic, although it can be argued that
human beings to a certain extent have a psychological disposition to myopic
foresight.
Another approach to the indeterminacy problem in the Diamond model is
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motivated by the presumption that the possibility of multiple equilibria is basi-
cally due to the rough time structure of the model. Each period in the model
corresponds to half of an adult person’s lifetime. Moreover, in the first period of
life there is no capital income, in the second there is no labor income. This coarse
notion of time may artificially generate a multiplicity of equilibria or, with my-
opic foresight, oscillations. An expanded model where people live many periods
may “smooth”the responses of the system to the events impinging on it. Indeed,
with working life stretching over more than one period, wealth effects of changes
in the interest rate arise, thereby reducing the likelihood of a backward-bending
transition curve.
Anyway, in a first approach the analyst may want to stay with a rough time

structure because of its analytical convenience and then make the best of it by
imposing conditions on the utility function, the production function, and/or pa-
rameter values so as to rule out multiple equilibria. Following this approach we
stay with the assumption of perfect foresight, but assume that circumstances are
such that multiple temporary equilibria with self-fulfilling expectations do not
arise.

Conditions for uniqueness of the equilibrium path

Suffi cient for the equilibrium path to be unique is that preferences and technology
in combination are such that the slope of the transition curve is everywhere
positive. Hence we impose the Positive Slope Assumption that

sr(w(kt), r(kt+1)) >
1 + n

f ′′(kt+1)
(A2)

everywhere along an equilibrium path. This condition is of course always satisfied
when sr ≥ 0 (reflecting an elasticity of marginal utility of consumption not above
one) and can be satisfied even if sr < 0 (as long as sr is small in absolute value).
Essentially, it is an assumption that the income effect on consumption as young
of a rise in the interest rate does not dominate the substitution effect “too much”.
Unfortunately, a condition like (A2) is not in itself very informative. This is

because it is expressed in terms of an endogenous variable, kt+1, for given kt. A
model assumption should preferably be stated in terms of what is given, also called
the “primitives”of the model, that is, the exogenous elements which in this model
comprise the assumed preferences, demography, technology, and the market form.
We can state suffi cient conditions, however, in terms of the “primitives”, such that
(A2) is ensured. Here we state two such suffi cient conditions, both involving a
CRRA period utility function with parameter θ as defined in (3.14):

(a) If 0 < θ ≤ 1, then (A2) holds for all kt > 0 along an equilibrium path.
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(b) If the production function is of CES-type,17 i.e., f(k) = A(αkγ + 1− α)1/γ,
A > 0, 0 < α < 1, −∞ < γ < 1, then (A2) holds along an equilibrium path
even for θ > 1, if the elasticity of substitution between capital and labor,
1/(1− γ), is not too small, i.e., if

1

1− γ >
1− 1/θ

1 + (1 + ρ)−1/θ(1 + f ′(k)− δ)(1−θ)/θ (3.36)

for all k > 0. In turn, suffi cient for this is that (1− γ)−1 > 1− θ−1.

That (a) is suffi cient for (A2) is immediately visible in (3.15). The suffi ciency
of (b) is proved in Appendix D. The elasticity of substitution between capital
and labor is a concept analogue to the elasticity of intertemporal substitution
in consumption. It is a measure of the sensitivity of the chosen k = K/L with
respect to the relative factor price. The next chapter goes more into detail with
the concept and shows, among other things, that the Cobb-Douglas production
function corresponds to γ = 0. So the Cobb-Douglas production function will
satisfy the inequality (1− γ)−1 > 1− θ−1 (since θ > 0), hence also the inequality
(3.36).
With these or other suffi cient conditions in the back of our mind we shall now

proceed imposing the Positive Slope Assumption (A2). To summarize:

PROPOSITION 3 (uniqueness of an equilibrium path) Suppose the No Fast and
Positive Slope assumptions, (A1) and (A2), apply. Then, if k0 > 0, there exists
a unique equilibrium path.
(i) if k0 > 0, there exists a unique equilibrium path;
(ii) if k0 = 0, an equilibrium path exists if and only if f(0) > 0 (i.e., capital not
essential).

When the conditions of Proposition 3 hold, the fundamental difference equa-
tion, (3.32), of the model defines kt+1 as an implicit function of kt,

kt+1 = ϕ(kt),

for all kt > 0, where ϕ(kt) is called a transition function. The derivative of this
implicit function is given by (3.34) with kt+1 on the right-hand side replaced by
ϕ(kt), i.e.,

ϕ′(kt) =
sw (w (kt) , r (ϕ(kt)))w

′(kt)

1 + n− sr (w (kt) , r (ϕ(kt))) r′(ϕ(kt))
> 0. (3.37)

The positivity for all kt > 0 is due to (A2). Example 2 above leads to a transition
function.
17CES stands for Constant Elasticity of Substitution. CES production functions are consid-

ered in detail in Chapter 4.
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Having determined the evolution of kt, we have in fact determined the evolu-
tion of “everything”in the economy: the factor prices w(kt) and r(kt), the saving
of the young st = s(w(kt), r(kt+1)), and the consumption by both the young and
the old. The mechanism behind the evolution of the economy is the Walrasian (or
Classical) mechanism where prices, here wt and rt, always adjust so as to generate
market clearing as if there were a Walrasian auctioneer and where expectations
always adjust so as to be model consistent.

Existence and stability of a steady state?

Possibly the equilibrium path converges to a steady state. To address this issue,
we examine the possible configurations of the transition curve in more detail. In
addition to being positively sloped everywhere, the transition curve will always,
for kt > 0, be situated strictly below the solid curve, kt+1 = w(kt)/(1 +n), shown
in Fig. 3.6. In turn, the latter curve is always, for kt > 0, strictly below the
stippled curve, kt+1 = f(kt)/(1 + n), in the figure. To be precise:

LEMMA 3 (ceiling and roof) Suppose the No Fast Assumption (A1) applies.
Along an equilibrium path, whenever kt > 0,

0 < kt+1 <
w(kt)

1 + n
<
f(kt)

1 + n
, t = 0, 1, . . . .

Proof. From (iii) of Proposition 2, an equilibrium path has wt = w(kt) > 0 and
kt+1 > 0 for t = 0, 1, 2,. . . . Thus,

0 < kt+1 =
st

1 + n
<

wt
1 + n

=
w(kt)

1 + n
=
f(kt)− f ′(kt)kt

1 + n
<
f(kt)

1 + n
,

where the first equality comes from (3.32), the second inequality from Lemma
1 in Section 3.3, and the last inequality from the fact that f ′(kt)kt > 0 when
kt > 0. �
We will call the graph (kt, w(kt)/(1 + n)) in Fig. 3.6 a ceiling. It acts as a

ceiling on kt+1 simply because the saving of the young cannot exceed the income
of the young, w(kt). And we will call the graph (kt, f(kt)/(1 +n)) a roof, because
“everything of interest”occurs below it. The roof can be drawn directly on the
basis of the production function f(kt).
To characterize the position of the roof relative to the 45◦ line, we consider

the lower Inada condition, limk→0 f
′(k) =∞.

LEMMA 4 The roof, R(k) ≡ f(k)/(1+n), has positive slope everywhere, crosses
the 45◦ line for at most one k > 0 and can only do that from above. A necessary
and suffi cient condition for the roof to be above the 45◦ line for small k is that
either limk→0 f

′(k) > 1 + n or f(0) > 0 (capital not essential).
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Proof. Since f ′ > 0, the roof has positive slope. Since f ′′ < 0, it can only cross
the 45◦ line once and only from above. If and only if limk→0 f

′(k) > 1 + n, then
for small kt, the roof is steeper than the 45◦ line. Obviously, if f(0) > 0, then
close to the origin, the roof will be above the 45◦ line. �

Figure 3.6: A case where both the roof and the ceiling cross the 45◦ line, but the
transition curve does not (no steady state exists).

LEMMA 5 Given w(k) = f(k) − f ′(k)k for all k ≥ 0, where f(k) satisfies
f(0) ≥ 0, f ′ > 0, f ′′ < 0, the following holds:
(i) limk→∞w(k)/k = 0;
(ii) the ceiling, C(k) ≡ w(k)/(1 + n), is positive and has positive slope for all
k > 0; moreover, there exists k̄ > 0 such that C(k) < k for all k > k̄.

Proof. (i) In view of f(0) ≥ 0 combined with f ′′ < 0, we have w(k) > 0 for
all k > 0. Hence, limk→∞w(k)/k ≥ 0 if this limit exists. Consider an arbitrary
k1 > 0. We have f ′(k1) > 0. For all k > k1, it holds that 0 < f ′(k) < f ′(k1), in
view of f ′ > 0 and f ′′ < 0, respectively. Hence, limk→∞ f

′(k) exists and

0 ≤ lim
k→∞

f ′(k) < f ′(k1). (3.38)

We have

lim
k→∞

w(k)

k
= lim

k→∞

f(k)

k
− lim

k→∞
f ′(k). (3.39)
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There are two cases to consider. Case 1: f(k) has an upper bound. Then,
limk→∞ f(k)/k = 0 so that limk→∞w(k)/k = − limk→∞ f

′(k) = 0, by (3.39)
and (3.38), as w(k)/k > 0 for all k > 0. Case 2: limk→∞ f(k) = ∞. Then,
by L’Hôpital’s rule for “∞/∞”, limk→∞(f(k)/k) = limk→∞ f

′(k) so that (3.39)
implies limk→∞w(k)/k = 0.
(ii) As n > −1 and w(k) > 0 for all k > 0, C(k) > 0 for all k > 0. From

w′(k) = −kf ′′(k) > 0 follows C ′(k) = −kf ′′(k)/(1 + n) > 0 for all k > 0; that is,
the ceiling has positive slope everywhere. For k > 0, the inequality C(k) < k is
equivalent to w(k)/k < 1+n. By (i) follows that for all ε > 0, there exists kε > 0
such that w(k)/k < ε for all k > kε. Now, letting ε = 1 + n and k̄ = kε proves
that there exists k̄ > 0 such that w(k)/k < 1 + n for all k > k̄. �
While the roof can be above the 45◦ line for all kt > 0, the ceiling can not.

Indeed, (ii) of the lemma implies that if for small kt the ceiling is above the 45◦

line, the ceiling will necessarily cross the 45◦ line at least once for larger kt.
In view of the ceiling being always an upper bound on kt+1, what is the point

of introducing also the roof? The point is that the roof is a more straightforward
construct since it is directly given by the production function and is always strictly
concave. The ceiling is generally a more complex construct. It can have convex
sections and for instance cross the 45◦ line at more than one point if at all. .
A necessary condition for existence of a (non-trivial) steady state is that the

roof is above the 450 line for small kt. But this is not suffi cient for also the
transition curve to be above the 450 line for small kt. Fig. 3.6 illustrates this. Here
the transition curve is in fact everywhere below the 450 line. In this case no steady
state exists and the dynamics imply convergence towards the “catastrophic”point
(0, 0).Given the rate of population growth, the saving of the young is not suffi cient
to avoid famine in the long run. This will for example happen if the technology
implies so low productivity that even if all income of the young were saved, we
would have kt+1 < kt for all kt > 0, cf. Exercise 3.2. The Malthusian mechanism
will be at work and bring down n (outside the model). This exemplifies that even
a trivial steady state (the point (0,0)) may be of interest in so far as it may be
the point the economy is heading to without ever reaching it.
To help existence of a steady state we will impose the condition that either

capital is not essential or preferences and technology fit together in such a way
that the slope of the transition curve is larger than one for small kt. That is, we
assume that either

(i) f(0) > 0 or (A3)

(ii) lim
k→0

ϕ′(k) > 1,

where ϕ′(k) is implicitly given in (3.37). Whether condition (i) of (A3) holds in
a given situation can be directly checked from the production function. If it does
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not, we should check condition (ii). But this condition is less amenable because
the transition function ϕ is not one of the “primitives” of the model. There
exist cases, though, where we can find an explicit transition function and try out
whether (ii) holds (like in Example 2 above). But generally we can not. Then we
have to resort to suffi cient conditions for (ii) of (A3), expressed in terms of the
“primitives”. For example, if the period utility function belongs to the CRRA
class and the production function is Cobb-Douglas at least for small k, then (ii)
of (A3) holds (see Appendix E). Anyway, as (i) and (ii) of (A3) can be interpreted
as reflecting two different kinds of “early steepness”of the transition curve, we
shall call (A3) the Early Steepness Assumption.18

PROPOSITION 4 (existence and stability of a steady state) Assume that the
No Fast Assumption (A1) and the Positive Slope assumption (A2) apply as well
as the Early Steepness Assumption (A3). Then there exists at least one steady
state k∗ > 0 that is locally asymptotically stable. Oscillations do not occur.

Proof. By (A1), Lemma 3 applies. From Proposition 2 we know that if (i) of
(A3) holds, then kt+1 = st/(1 + n) > 0 even for kt = 0. Alternatively, (ii) of (A3)
is enough to ensure that the transition curve lies above the 45◦ line for small kt.
By Lemma 4 the roof then does the same. According to (ii) of Lemma 5, for
large kt the ceiling is below the 45◦ line. Being below the ceiling, cf. Lemma
3, the transition curve must therefore cross the 45◦ line at least once. Let k∗

denote the smallest kt at which it crosses. Then k∗ > 0 is a steady state with the
property 0 < ϕ′ (k∗) < 1. By graphical inspection we see that this steady state
is asymptotically stable. For oscillations to come about there must exist a steady
state, k∗∗, with ϕ′ (k∗∗) < 0, but this is impossible in view of (A2). �
From Proposition 4 we conclude that, given k0, the assumptions (A1) - (A3)

ensure existence and uniqueness of an equilibrium path; moreover, the equilibrium
path converges towards some steady state. Thus with these assumptions, for any
k0 > 0, sooner or later the system settles down at some steady state k∗ > 0. For
the factor prices we therefore have

rt = f ′(kt)− δ → f ′(k∗)− δ ≡ r∗, and

wt = f(kt)− ktf ′(kt)→ f(k∗)− k∗f ′(k∗) ≡ w∗,

for t → ∞. But there may be more than one steady state and therefore only
local stability is guaranteed. This can be shown by examples, where the utility
function, the production function, and parameters are specified in accordance
with the assumptions (A1) - (A3) (see Exercise 3.5 and ...).

18In (i) of (A3), the “steepness” is rather a “hop”at k = 0 if we imagine k approaching nil
from below.
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Figure 3.7: A case of multiple steady states (and capital being not essential).

Fig. 3.7 illustrates such a case (with f(0) > 0 so that capital is not essential).
Moving West-East in the figure, the first steady state, k∗1, is stable, the second,
k∗2, unstable, and the third, k

∗
3, stable. In which of the two stable steady states

the economy ends up depends on the initial capital-labor ratio, k0. The lower
steady state, k∗1, is known as a poverty trap. If 0 < k0 < k∗2, the economy is
caught in the trap and converges to the low steady state. But with high enough
k0 (k0 > k∗2), perhaps obtained by foreign aid, the economy avoids the trap and
converges to the high steady state. Looking back at Fig. 3.6, we can interpret
that figure’s scenario as exhibiting an inescapable poverty trap.
It turns out that CRRA utility combined with a Cobb-Douglas production

function ensures both that (A1) - (A3) hold and that a unique (non-trivial)
steady state exists. So in this case global asymptotic stability of the steady state
is ensured.19 Example 2 and Fig. 3.4 above display a special case of this, the
case θ = 1.

This is of course a convenient case for the analyst. A Diamond model sat-
isfying assumptions (A1) - (A3) and featuring a unique steady state is called a
well-behaved Diamond model.
We end this section with the question: Is it possible that aggregate consump-

tion, along an equilibrium path, for some periods exceeds aggregate income? We

19See last section of Appendix E.
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shall see that this is indeed possible in the model if K0 (wealth of the old in the
initial period) is large enough. Indeed, from national accounting we have:

C10 + C20 = F (K0, L0)− I0 > F (K0, L0)⇔ I0 < 0

⇔ K1 < (1− δ)K0 ⇔ K0 −K1 > δK0.

So aggregate consumption in period 0 being greater than aggregate income is
equivalent to a fall in the capital stock from period 0 to period 1 greater than
the capital depreciation in period 0. Consider the log utility Cobb-Douglas case
in Fig. 3.4 and suppose δ < 1 and Lt = L0 = 1, i.e., n = 0. Then kt = Kt for all
t and by (3.35), Kt+1 = (1−α)A

2+ρ
Kα
t . Thus K1 < (1− δ)K0 for

K0 >

(
(1− α)A

(2 + ρ)(1− δ)

)1/(1−α)

.

As initial K is arbitrary, this situation is possible. When it occurs, it reflects
that the financial wealth of the old is so large that their consumption (recall
they consume all their financial wealth as well as the interest on this wealth)
exceeds what is left of current aggregate production after subtracting the amount
consumed by the young. So aggregate gross investment in the economy will be
negative. Of course this is only feasible if capital goods can be “eaten”or at least
be immediately (without further resources) converted into consumption goods.
As it stands, the model has implicitly assumed this to be the case. And this is in
line with the general setup since the output good is homogeneous and can either
be consumed or piled up as capital.
We now turn to effi ciency problems.

3.6 The golden rule and dynamic ineffi ciency

An economy described by the Diamond model has the property that even though
there is perfect competition and no externalities, the outcome brought about
by the market mechanism may not be Pareto optimal.20 Indeed, the economy
may overaccumulate forever and thus suffer from a distinctive form of production
ineffi ciency.
A key element in understanding the concept of overaccumulation is the con-

cept of a golden-rule capital-labor ratio. Overaccumulation occurs when aggregate

20Recall that a Pareto optimal path is a technically feasible path with the property that
no other technically feasible path will make at least one individual better off without making
someone else worse off. A technically feasible path which is not Pareto optimal is called Pareto
inferior.
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saving maintains a capital-labor ratio above the golden-rule value forever. Let us
consider these concepts in detail.
In the present section generally the period length is arbitrary except when

we relate to the Diamond model and the period length therefore is half of adult
lifetime.

The golden-rule capital-labor ratio

The golden rule is a principle that relates to technically feasible paths. The
principle does not depend on the market form.
Consider the economy-wide resource constraint Ct = Yt − St = F (Kt, Lt) −

(Kt+1−Kt+δKt), where we assume that F is neoclassical with CRS. Accordingly,
aggregate consumption per unit of labor can be written

ct ≡
Ct
Lt

=
F (Kt, Lt)− (Kt+1 −Kt + δKt)

Lt
= f(kt) + (1− δ)kt − (1 + n)kt+1,

(3.40)
where k is the capital-labor ratioK/L. Note that Ct will generally be greater than
the workers’consumption. One should simply think of Ct as the flow of produced
consumption goods in the economy and ct as this flow divided by aggregate em-
ployment, including the labor that in period t produces investment goods. How
the consumption goods are distributed to different members of society is not our
concern here.

DEFINITION 5 By the golden-rule capital-labor ratio, kGR, is meant that value
of the capital-labor ratio k, which results in the highest possible sustainable level
of consumption per unit of labor.

Sustainability requires replicability forever. We therefore consider a steady
state. In a steady state kt+1 = kt = k so that (3.40) simplifies to

c = f(k)− (δ + n)k ≡ c(k). (3.41)

Maximizing gives the first-order condition

c′(k) = f ′(k)− (δ + n) = 0. (3.42)

In view of c′′(k) = f ′′(k) < 0, the condition (3.42) is both necessary and suffi cient
for an interior maximum. Let us assume that δ + n > 0 and that f satisfies the
condition

lim
k→∞

f ′(k) < δ + n < lim
k→0

f ′(k).

Then (3.42) has a solution in k, and it is unique because c′′(k) < 0. The solution
is called kGR so that

f ′(kGR)− δ = n.
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That is:

PROPOSITION 5 (the golden rule) The highest sustainable consumption level
per unit of labor in society is obtained when in steady state the net marginal
productivity of capital equals the growth rate of the economy.

Figure 3.8: A steady state with overaccumulation.

It follows that if a society aims at the highest sustainable level of consumption
and initially has k0 < kGR, it should increase its capital-labor ratio up to the
point where the extra output obtainable by a further small increase is exactly
offset by the extra gross investment needed to maintain the capital-labor ratio
at that level. The intuition is visible from (3.41). The golden-rule capital-labor
ratio, kGR, strikes the right balance in the trade-off between high output per unit
of labor and a not too high investment requirement. Although a steady state
with k > kGR would imply higher output per unit of labor, it would also imply
that a large part of that output is set aside for investment (namely the amount
(δ + n)k per unit of labor) to counterbalance capital depreciation and growth in
the labor force; without this investment the high capital-labor ratio k∗ would not
be maintained. With k > kGR this feature would dominate the first effect so that
consumption per unit of labor ends up low. Fig. 3.8 illustrates.
The name golden rule hints at the golden rule from the Bible: “Do unto others

as you would have them to do unto you.”We imagine that God asks the newly
born generation: “What capital-labor ratio would you prefer to be presented
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with, given that you must hand over the same capital-labor ratio to the next
generation?”The appropriate answer is: the golden-rule capital-labor ratio.

The possibility of overaccumulation in a competitive market economy

The equilibrium path in the Diamond model with perfect competition implies an
interest rate r∗ = f ′(k∗)− δ in a steady state. As an implication,

r∗ T n⇔ f ′(k∗)− δ T n⇔ k∗ S kGR, respectively,

in view of f ′′ < 0. Hence, a long-run interest rate below the growth rate of the
economy indicates that k∗ > kGR. This amounts to a Pareto-inferior state of
affairs. Indeed, everyone can be made better off if by a coordinated reduction of
saving and investment, k is reduced. A formal demonstration of this is given in
connection with Proposition 6 in the next subsection. Here we give an account
in more intuitive terms.
Consider Fig. 3.8. Let k be gradually reduced to the level kGR by refrain-

ing from investment in period t0 and forward until this level is reached. When
this happens, let k be maintained at the level kGR forever by providing for the
needed investment per young, (δ+ n)kGR. Then there would be higher aggregate
consumption in period t0 and every future period. Both the immediate reduction
of saving and a resulting lower capital-labor ratio to be maintained contribute to
this result. There is thus scope for both young and old to consume more in every
future period.
In the Diamond model a simple policy implementing such a Pareto improve-

ment in the case where k∗ > kGR (i.e., r∗ < n) is to incur a lump-sum tax on
the young, the revenue of which is immediately transferred lump sum to the old,
hence, fully consumed. Suppose this amounts to a transfer of one good from each
young to the old. Since there are 1 + n young people for each old person, every
old receives in this way 1 + n goods in the same period. Let this transfer be
repeated every future period. By decreasing their saving by one unit, the young
can maintain unchanged consumption in their youth, and when becoming old,
they receive 1 + n goods from the next period’s young and so on. In effect, the
“return”on the tax payment by the young is 1 + n next period. This is more
than the 1 + r∗ that could be obtained via the market through own saving.21

21In this model with no utility of leisure, a tax on wage income, or a mandatory pay-as-you-go
pension contribution (see Chapter 5) would act like a lump-sum tax on the young.
The described tax-transfers policy will affect the equilibrium interest rate negatively. By

choosing an appropriate size of the tax this policy, combined with competitive markets, will
under certain conditions (see Chapter 5.1) bring the economy to the golden-rule steady state
where overaccumulation has ceased and r∗ = n.
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A proof that k∗ > kGR is indeed theoretically possible in the Diamond model
can be based on the log utility-Cobb-Douglas case from Example 2 in Section
3.5.3. As indicated by the formula for r∗ in that example, the outcome r∗ < n,
which is equivalent to k∗ > kGR, can always be obtained by making the parameter
α ∈ (0, 1) in the Cobb-Douglas function small enough. The intuition is that a
small α implies a high 1−α, that is, a high wage income wL = (1−α)KαL−α ·L
= (1 − α)Y ; this leads to high saving by the young, since sw > 0. The result is
a high kt+1 which generates a high real wage also next period and may in this
manner be sustained forever.
An intuitive understanding of the fact that the perfectly competitive market

mechanism may thus lead to overaccumulation, can be based on the following
argument. Assume, first, that sr < 0. In this case, if the young in period t
expects the rate of return on their saving to end up small (less than n), the
decided saving will be large in order to provide for consumption after retirement.
But the aggregate result of this behavior is a high kt+1 and therefore a low f ′(kt+1).
In this way the expectation of a low rt+1 is confirmed by the actual events. The
young persons each do the best they can as atomistic individuals, taking the
market conditions as given. Yet the aggregate outcome is an equilibrium with
overaccumulation, hence a Pareto-inferior outcome.
Looking at the issue more closely, we see that sr < 0 is not crucial for this

outcome. Suppose sr = 0 (the log utility case) and that in the current period,
kt is, for some historical reason, at least temporarily considerably above kGR.
Thus, current wages are high, hence, st is relatively high (there is in this case no
offsetting effect on st from the relatively low expected rt+1). Again, the aggregate
result is a high kt+1 and thus the expectation is confirmed. Consequently, the
situation in the next period is the same and so on. By continuity, even if sr > 0,
the argument goes through as long as sr is not too large.

Dynamic ineffi ciency and the double infinity

Another name for the overaccumulation phenomenon is dynamic ineffi ciency.

DEFINITION 6 A technically feasible path {(ct, kt)}∞t=0 with the property that
there does not exist another technically feasible path with higher ct in some
periods without smaller ct in other periods is called dynamically effi cient. A
technically feasible path {(ct, kt)}∞t=0 which is not dynamically effi cient is called
dynamically ineffi cient.

PROPOSITION 6 A technically feasible path {(ct, kt)}∞t=0 with the property that
for t→∞, kt → k∗ > kGR, is dynamically ineffi cient.

Proof. Let k∗ > kGR. Then there exists an ε > 0 such that k ∈ (k∗ − 2ε, k∗ + 2ε)
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implies f ′(k)− δ < n since f ′′ < 0. By concavity of f,

f(k)− f(k − ε) ≤ f ′(k − ε)ε. (3.43)

Consider a technically feasible path {(ct, kt)}∞t=0 with kt → k∗ for t → ∞ (the
reference path). Then there exists a t0 such that for t ≥ t0, kt ∈ (k∗ − ε, k∗ + ε),
f ′(kt) − δ < n and f ′(kt − ε) − δ < n. Consider an alternative feasible path{

(ĉt, k̂t)
}∞
t=0

, where a) for t = t0 consumption is increased relative to the reference

path such that k̂t0+1 = kt0 − ε; and b) for all t > t0, consumption is such that
k̂t+1 = kt− ε.We now show that after period t0, ĉt > ct. Indeed, for all t > t0, by
(3.40),

ĉt = f(k̂t) + (1− δ)k̂t − (1 + n)k̂t+1

= f(kt − ε) + (1− δ)(kt − ε)− (1 + n)(kt+1 − ε)
≥ f(kt)− f ′(kt − ε)ε+ (1− δ)(kt − ε)− (1 + n)(kt+1 − ε) (by (3.43))

> f(kt)− (δ + n)ε+ (1− δ)kt − (1 + n)kt+1 + (δ + n)ε

= f(kt) + (1− δ)kt − (1 + n)kt+1 = ct,

by (3.40). �
Moreover, it can be shown22 that:

PROPOSITION 7 A technically feasible path {(ct, kt)}∞t=0 such that for t→∞,
kt → k∗ ≤ kGR, is dynamically effi cient.

Accordingly, a steady state with k∗ < kGR is never dynamically ineffi cient.
This is because increasing k from this level always has its price in terms of a
decrease in current consumption; and at the same time decreasing k from this
level always has its price in terms of lost future consumption. But a steady state
with k∗ > kGR is always dynamically ineffi cient. Intuitively, staying forever with
k = k∗ > kGR, implies that society never enjoys its great capacity for producing
consumption goods.
The fact that k∗ > kGR, and therefore dynamic ineffi ciency, cannot be ruled

out might seem to contradict the First Welfare Theorem from the microeconomic
theory of general equilibrium. This is the theorem saying that under certain con-
ditions (essentially that increasing returns to scale are absent are absent, markets
are competitive, no goods are of public good character, and there are no exter-
nalities, then market equilibria are Pareto optimal. In fact, however, the First
Welfare Theorem also presupposes a finite number of periods or, if the number of
periods is infinite, then a finite number of agents. In contrast, in the OLG model

22See Cass (1972).
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there is a double infinity: an infinite number of periods and agents. Hence, the
First Welfare Theorem breaks down. Indeed, the case r∗ < n, i.e., k∗ > kGR, can
arise under laissez-faire. Then, as we have seen, everyone can be made better
off by a coordinated intervention by some social arrangement (a government for
instance) such that k is reduced.
The essence of the matter is that the double infinity opens up for technically

feasible reallocations which are definitely beneficial when r∗ < n and which a
central authority can accomplish but the market can not. That nobody need
loose by the described kind of redistribution is due to the double infinity: the
economy goes on forever and there is no last generation. Nonetheless, some kind
of centralized coordination is required to accomplish a solution.
There is an analogy in “Gamow’s bed problem”: There are an infinite number

of inns along the road, each with one bed. On a certain rainy night all innkeepers
have committed their beds. A late guest comes to the first inn and asks for a
bed. “Sorry, full up!”But the minister of welfare hears about it and suggests
that each incumbent guest move down the road one inn.23

Whether the theoretical possibility of overaccumulation should be a matter of
practical concern is an empirical question about the relative size of rates of return
and economic growth. To answer the question meaningfully, we need an extension
of the criterion for overaccumulation so that the presence of technological progress
and rising per capita consumption in the long run can be taken into account. This
is one of the topics of the next chapter. At any rate, we can already here reveal
that there exists no indication that overaccumulation has ever been an actual
problem in industrialized market economies.
A final remark before concluding. Proposition 5 about the golden rule can be

generalized to the case where instead of one there are n different capital goods in
the economy. Essentially the generalization says that assuming CRS-neoclassical
production functions with n different capital goods as inputs, one consumption
good, no technological change, and perfectly competitive markets, a steady state
in which per-unit-of labor consumption is maximized has interest rate equal to
the growth rate of the labor force when technological progress is ignored (see,
e.g., Mas-Colell, 1989).

3.7 Concluding remarks

(Unfinished)
In several respects the conclusions we get from OLG models are different than

those from representative agent models to be studied later. In OLG models the
23George Gamow (1904-1968) was a Russian physicist. The problem is also known as Hilbert’s

hotel problem, after the German mathematician David Hilbert (1862-1943).
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aggregate quantities are the outcome of the interplay of finite-lived agents at
different stages in their life cycle. The turnover in the population plays a crucial
role. In this way the OLG approach lays bare the possibility of coordination
failure on a grand scale. In contrast, in a representative agent model, aggregate
quantities are just a multiple of the actions of the representative household.
Regarding analytical tractability, the complexity implied by having in every

period two different coexisting generations is in some respects more than compen-
sated by the fact that the finite time horizon of the households make the dynamics
of the model one-dimensional : we end up with a first-order difference equation
in the capital-labor ratio, kt, in the economy. In contrast, the dynamics of the
basic representative agent model (Chapter 8 and 10) is two-dimensional (owing
to the assumed infinite horizon of the households considered as dynasties).
Miscellaneous notes:
OLG gives theoretical insights concerning macroeconomic implications of life

cycle behavior, allows heterogeneity, provides training in seeing the economy as
consisting of a heterogeneous population where the distribution of agent charac-
teristics matters for the aggregate outcome.
Farmer (1993), p. 125, notes that OLG models are diffi cult to apply and

for this reason much empirical work in applied general equilibrium theory has
regrettably instead taken the representative agent approach.
Outlook: Rational speculative bubbles in general equilibrium, cf. Chapter ?.

3.8 Literature notes

1. The Nobel Laureate Paul A. Samuelson (1915-2009) is one of the pioneers
of OLG models. Building on the French economist and Nobel laureate Maurice
Allais (1911-2010), Samuelson’s famous article, Samuelson (1958), was concerned
with a missing market problem. Imagine a two-period OLG economy where,
as in the Diamond model, only the young have an income (which in turn is,
by Samuelson, assumed exogenous). Contrary to the Diamond model, however,
there is neither capital nor other stores of value. Then, in the laissez-faire market
economy the old have to starve. This is clearly a Pareto-inferior allocation; if
each member of the young generation hands over to the old generation one unit
of account, and this is repeated every period, everyone will be better off. Since
for every old there are 1 + n young, the implied rate of return would be n, the
population growth rate. Such transfers do not arise under laissez-faire. A kind
of social contract is required. As Samuelson pointed out, a government could in
period 0 issue paper notes, “money”, and transfer them to the members of the
old generation who would then use them to buy goods from the young. Provided
the young believed the notes to be valuable in the next period, they would accept
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them in exchange for some of their goods in order to use them in the next period
for buying from the new young generation and so on. We have here an example of
how a social institution can solve a coordination problem. This gives a flavour of
Samuelson’s contribution although in his original article he assumed three periods
of life.

2. Diamond (1965) extended Samuelson’s contribution by adding capital ac-
cumulation. Because of its antecedents Diamonds OLGmodel is sometimes called
the Samuelson-Diamond model or the Allais-Samuelson-Diamond model. In our
exposition we have drawn upon clarifications by Galor and Ryder (1989) and
de la Croix and Michel (2002). The last mentioned contribution is an extensive
exploration of discrete-time OLG models and their applications.

3. The life-cycle saving hypothesis was put forward by Franco Modigliani
(1918-2003) and associates in the 1950s. See for example Modigliani and Brum-
berg (1954). Numerous extensions of the framework, relating to the motives (b)
- (e) in the list of Section 3.1, see for instance de la Croix and Michel (2002).

4. A review of the empirics of life-cycle behavior and attempts at refining
life-cycle models are given in Browning and Crossley (2001).

5. Regarding the dynamic effi ciency issue, both the propositions 6 and 7 were
shown in a stronger form by the American economist David Cass (1937-2008).
Cass established the general necessary and suffi cient condition for a feasible path
{(ct, kt)}∞t=0 to be dynamically effi cient (Cass 1972). Our propositions 6 and 7 are
more restrictive in that they are limited to paths that converge. Partly intuitive
expositions of the deeper aspects of the theory are given by Shell (1971) and
Burmeister (1980).

6. Diamond has also contributed to other fields of economics, including search
theory for labor markets. In 2010 Diamond, together with Dale Mortensen and
Christopher Pissarides, was awarded the Nobel price in economics.

From here very incomplete:

The two-period structure of Diamonds OLG model leaves little room for con-
sidering, e.g., education and dissaving in the early years of life. This kind of
issues is taken up in three-period extensions of the Diamond model, see ...

Multiple equilibria, self-fulfilling expectations, optimism and pessimism..

Dynamic ineffi ciency, see also Burmeister (1980).

Bewley 1977, 1980.

Two-sector OLG: Galor (1992). Galor’s book??

On the golden rule in a general setup, see Mas-Colell (1989).
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3.9 Appendix

A. On the CRRA utility function

Derivation of the CRRA function Consider a utility function u(c), defined
for all c > 0 and satisfying u′(c) > 0, u′′(c) < 0. Let the absolute value of
the elasticity of marginal utility be denoted θ(c), that is, θ(c) ≡ −cu′′(c)/u′(c)
> 0. We claim that if θ(c) is a positive constant, θ, then up to a positive linear
transformation u(c) must be of the form

u(c) =

{
c1−θ

1−θ , when θ 6= 1,

ln c, when θ = 1,
(*)

i.e., of CRRA form.

Proof. Suppose θ(c) = θ > 0. Then, u′′(c)/u′(c) = −θ/c. By integration, lnu′(c)
= −θ ln c+A, where A is an arbitrary constant. Take the antilogarithm function
on both sides to get u′(c) = eAe−θ ln c = eAc−θ. By integration we get

u(c) =

{
eA c

1−θ

1−θ +B, when θ 6= 1,

eA ln c+B, when θ = 1,

where B is an arbitrary constant. This proves the claim. Letting A = B = 0, we
get (*). �

When we want to make the kinship between the members of the CRRA family
transparent, we maintain A = 0 and for θ = 1 also B = 0, whereas for θ 6= 1 we
set B = −1/(1−θ). In this way we achieve that all members of the CRRA family
will be represented by curves going through the same point as the log function,
namely the point (1, 0), cf. Fig. 3.2. And adding or subtracting a constant does
not affect marginal rates of substitution and consequently not behavior.

The domain of the CRRA function We want to extend the domain to
include c = 0. If θ ≥ 1, the CRRA function, whether in the form u(c) = (c1−θ −
1)/(1 − θ) or in the form (*), is defined only for c > 0, not for c = 0. This is
because for c→ 0 we get u(c)→ −∞. In this case we simply define u(0) = −∞.
This will create no problems since the CRRA function anyway has the property
that u′(c) → ∞, when c → 0 (whether θ is larger or smaller than one). The
marginal utility thus becomes very large as c becomes very small, that is, the
No Fast Assumption is satisfied. This will ensure that the chosen c is strictly
positive whenever there is a positive budget. So throughout this book we define
the domain of the CRRA function to be [0,∞) .
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The range of the CRRA function Considering the CRRA function u(c) ≡(
c1−θ − 1

)
(1− θ)−1 for c ∈ [0,∞) , we have:

for 0 < θ < 1, the range of u(c) is
[
−(1− θ)−1,∞

)
,

for θ = 1, the range of u(c) is [−∞,∞) ,

for θ > 1, the range of u(c) is [−∞,−(1− θ)−1).

Thus, in the latter case u(c) is bounded from above and so allows asymptotic
“saturation”to occur.

B. Deriving the elasticity of intertemporal substitution in consumption

Referring to Section 3.3, we here show that the definition of σ(c1, c2) in (3.17)
gives the result (3.18). Let x ≡ c2/c1 and β ≡ (1 + ρ)−1. Then the first-order
condition (3.16) and the equation describing the considered indifference curve
constitute a system of two equations

u′(c1) = βu′(xc1)R,

u(c1) + βu(xc1) = Ū .

For a fixed utility level U = Ū these equations define c1 and x as implicit functions
of R, c1 = c(R) and x = x(R). We calculate the total derivative w.r.t. R in both
equations and get, after ordering,

[u′′(c1)− βRu′′(xc1)x] c′(R)− βRu′′(xc1)c1x
′(R)

= βu′(xc1), (3.44)

[u′(c1) + βu′(xc1)x] c′(R) = −βu′(xc1)c1x
′(R). (3.45)

Substituting c′(R) from (3.45) into (3.44) and ordering now yields

−
[
x
c1u
′′(c1)

u′(c1)
+R

xc1u
′′(xc1)

u′(xc1)

]
R

x
x′(R) = x+R.

Since −cu′′(c)/u′(c) ≡ θ(c), this can be written

R

x
x′(R) =

x+R

xθ(c1) +Rθ(xc1)
.

Finally, in view of xc1 = c2 and the definition of σ(c1, c2), this gives (3.18).
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C. Walras’law

In the proof of Proposition 1 we referred to Walras’law. Here is how Walras’law
works in each period in a model like this. We consider period t, but for simplicity
we skip the time index t on the variables. There are three markets, a market
for capital services, a market for labor services, and a market for output goods.
Suppose a “Walrasian auctioneer”calls out the price vector (r̂, w, 1), where r̂ > 0
and w > 0, and asks all agents, i.e., the young, the old, and the representative
firm, to declare their supplies and demands.
The supplies of capital and labor are by assumption inelastic and equal to

K units of capital services and L units of labor services. But the demand for
capital and labor services depends on the announced r̂ and w. Let the potential
pure profit of the representative firm be denoted Π. If r̂ and w are so that Π < 0,
the firm declares Kd = 0 and Ld = 0. If on the other hand at the announced r̂
and w, Π = 0 (as when r̂ = r(k) + δ and w = w(k)), the desired capital-labor
ratio is given as kd = f ′−1(r̂) from (3.20), but the firm is indifferent w.r.t. the
absolute level of the factor inputs. In this situation the auctioneer tells the firm
to declare Ld = L (recall L is the given labor supply) and Kd = kdLd which is
certainly acceptable for the firm. Finally, if Π > 0, the firm is tempted to declare
infinite factor demands, but to avoid that, the auctioneer imposes the rule that
the maximum allowed demands for capital and labor are 2K and 2L, respectively.
Within these constraints the factor demands will be uniquely determined by r̂
and w and we have

Π = Π(r̂, w, 1) = F (Kd, Ld)− r̂Kd − wLd. (3.46)

The owners of both the capital stock K and the representative firm must be
those who saved in the previous period, namely the currently old. These elderly
will together declare the consumption c2L−1 = (1 + r̂ − δ)K + Π and the net
investment −K (which amounts to disinvestment). The young will declare the
consumption c1L = wL− s(w, re+1)L and the net investment sL = s(w, re+1)L. So
aggregate declared consumption will be C = (1 + r̂− δ)K + Π +wL− s(w, re+1)L
and aggregate net investment I − δK = s(w, re+1)L − K. It follows that C + I
= wL + r̂K + Π. The aggregate declared supply of output is Y s = F (Kd, Ld).
The values of excess demands in the three markets now add to

Z(r̂, w, 1) ≡ w(Ld − L) + r̂(Kd −K) + C + I − Y s

= wLd − wL+ r̂Kd − r̂K + wL+ r̂K + Π− F (Kd, Ld)

= wLd + r̂Kd + Π− F (Kd, Ld) = 0,

by (3.46).
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This is a manifestation of Walras’law for each period: whatever the announced
price vector for the period is, the aggregate value of excess demands in the period
is zero. The reason is the following. When each household satisfies its budget
constraint and each firm pays out its ex ante profit,24 then the economy as a
whole has to satisfy an aggregate budget constraint for the period considered.
The budget constraints, demands, and supplies operating in this thought ex-

periment (and in Walras’law in general) are the Walrasian budget constraints,
demands, and supplies. Outside equilibrium these are somewhat artificial con-
structs. A Walrasian budget constraint is based on the assumption that the
desired actions can be realized. This assumption will be wrong unless r̂ and w
are already at their equilibrium levels. But the assumption that desired actions
can be realized is never falsified because the thought experiment does not allow
trades to take place outside Walrasian equilibrium. Similarly, the Walrasian con-
sumption demand by the worker is rather hypothetical outside equilibrium. This
demand is based on the income the worker would get if fully employed at the
announced real wage, not on the actual employment (or unemployment) at that
real wage.
These ambiguities notwithstanding, the important message of Walras’ law

goes through, namely that when two of the three markets clear (in the sense of
the Walrasian excess demands being nil), so does the third.

D. Proof of (i) and (ii) of Proposition 2

For convenience we repeat the fundamental difference equation characterizing an
equilibrium path:

kt+1 =
s (w (kt) , r (kt+1))

1 + n
,

where w(k) ≡ f(k)− f ′(k)k > 0 for all k > 0 and r(k) ≡ f ′(k)− δ > −1 for all
k ≥ 0. The key to the proof of Proposition 2 about existence of an equilibrium
path is the following lemma.

LEMMA D1 Suppose the No Fast Assumption (A1) applies and let w > 0 and
n > −1 be given. Then the equation

s (w, r (k))

k
= 1 + n. (3.47)

has at least one solution k > 0.

24By ex ante profit is meant the hypothetical profit calculated on the basis of firms’desired
supply evaluated at the announced price vector, (r̂, w, 1).
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Proof. Note that 1 + n > 0. From Lemma 1 in Section 3.3 follows that for all
possible values of r(k), 0 < s(w, r(k)) < w. Hence, for any k > 0,

0 <
s (w, r (k))

k
<
w

k
.

Letting k → ∞ we then have s (w, r (k)) /k → 0 since s (w, r (k)) /k is squeezed
between 0 and 0 (as indicated in the two graphs in Fig. 3.9).

Figure 3.9: Existence of a solution to equation (3.47).

Next we consider k → 0. There are two cases.
Case 1: limk→0 s (w, r (k)) > 0.25 Then obviously limk→0 s (w, r (k)) /k =∞.
Case 2: limk→0 s (w, r (k)) = 0.26 In this case we have

lim
k→0

r (k) =∞. (3.48)

Indeed, since f ′(k) rises monotonically as k → 0, the only alternative would be
that limk→0 r (k) exists and is <∞; then, by Lemma 1 in Section 3.3, we would
be in case 1 rather than case 2. By the second-period budget constraint, with
r = r(k), consumption as old is c2 = s (w, r (k)) (1 + r(k)) ≡ c(w, k) > 0 so that

s (w, r (k))

k
=

c(w, k)

[1 + r(k)] k
.

The right-hand side of this equation goes to∞ for k → 0 since limk→0 [1 + r(k)] k =
0 by Technical Remark in Section 3.4 and limk→0 c(w, k) = ∞; this latter fact
follows from the first-order condition (3.8), which can be written

0 ≤ u′(c(w, k)) = (1 + ρ)
u′(w − s(w, r(k))

1 + r(k)
≤ (1 + ρ)

u′(w)

1 + r(k)
.

25If the limit does not exist, the proof applies to the limit inferior of s (w, r (k)) for k → 0.
The limit inferior for i→∞ of a sequence {xi}∞i=0 is defined as limi→∞ inf {xj | j = i, i+1, . . . } ,
where inf of a set Si = {xj | j = i, i+ 1, . . . } is defined as the greatest lower bound for Si.
26If the limit does not exist, the proof applies to the limit inferior of s (w, r (k)) for k → 0.
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Taking limits on both sides gives

lim
k→0

u′(c(w, k)) = (1 + ρ) lim
k→0

u′(w − s (w, r (k)))

1 + r(k)
= (1 + ρ) lim

k→0

u′(w)

1 + r(k)
= 0,

where the second equality comes from the fact that we are in case 2 and the
third comes from (3.48). But since u′(c) > 0 and u′′(c) < 0 for all c > 0,
limk→0 u

′(c(w, k)) = 0 requires limk→0 c(w, k) =∞, as was to be shown.
In both Case 1 and Case 2 we thus have that k → 0 implies s (w, r (k)) /k →

∞. Since s (w, r (k)) /k is a continuous function of k, there must be at least one
k > 0 such that (3.47) holds (as illustrated by the two graphs in Fig. 3.14). �
Now, to prove (i) of Proposition 2, consider an arbitrary kt > 0. We have

w(kt) > 0. In (3.47), let w = w(kt). By Lemma C1, (3.47) has a solution k > 0.
Set kt+1 = k. Starting with t = 0, from a given k0 > 0 we thus find a k1 > 0 and
letting t = 1, from the now given k1 we find a k2 and so on. The resulting infinite
sequence {kt}∞t=0 is an equilibrium path. In this way we have proved existence of
an equilibrium path if k0 > 0. Thereby (i) of Proposition 2 is proved.
But what if k0 = 0? Then, if f(0) = 0, no temporary equilibrium is possible in

period 0, in view of (ii) of Proposition 1; hence there can be no equilibrium path.
Suppose f(0) > 0. Then w(k0) = w(0) = f(0) > 0, as explained in Technical
Remark in Section 3.4. Let w in equation (3.47) be equal to f(0). By Lemma
C1 this equation has a solution k > 0. Set k1 = k. Letting period 1 be the new
initial period, we are back in the case with initial capital positive. This proves
(ii) of Proposition 2.

E. Suffi cient conditions for certain properties of the transition curve

Positive slope everywhere For convenience we repeat here the condition
(3.36):

1

1− γ >
1− σ

1 + (1 + ρ)−σ(1 + f ′(k)− δ)σ−1
, (*)

where we have substituted σ ≡ 1/θ. In Section 3.5.3 we claimed that in the
CRRA-CES case this condition is suffi cient for the transition curve to be posi-
tively sloped everywhere. We here prove the claim.
Consider an arbitrary kt > 0 and let w ≡ w(kt) > 0. Knowing that w′(kt) > 0

for all kt > 0, we can regard kt+1 as directly linked to w. With k representing
kt+1, k must satisfy the equation k = s(w, r(k))/(1 + n). A suffi cient condition
for this equation to implicitly define k as an increasing function of w is also a
suffi cient condition for the transition curve to be positively sloped for all kt > 0.
When u(c) belongs to the CRRA class, by (3.15) with σ ≡ 1/θ, we have

s(w, r(k)) = [1 + (1 + ρ)σ(1 + r(k))1−σ]
−1
w. The equation k = s(w, r(k))/(1+n)
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then implies
w

1 + n
= k

[
1 + (1 + ρ)σR(k)1−σ] ≡ h(k), (3.49)

where R(k) ≡ 1 + r(k) ≡ 1 + f ′(k)− δ > 0 for all k > 0. It remains to provide a
suffi cient condition for obtaining h′(k) > 0 for all k > 0. We have

h′(k) = 1 + (1 + ρ)σR(k)1−σ [1− (1− σ)η(k)] , (3.50)

since η(k) ≡ −kR′(k)/R(k) > 0, the sign being due to R′(k) = f ′′(k) < 0. So
h′(k) > 0 if and only if 1−(1−σ)η(k) > −(1+ρ)−σR(k)σ−1, a condition equivalent
to

1

η(k)
>

1− σ
1 + (1 + ρ)−σR(k)σ−1

. (3.51)

To make this condition more concrete, consider the CES production function

f(k) = A(αkγ + 1− α), A > 0, 0 < α < 1, γ < 1. (3.52)

Then f ′(k) = αAγ(f(k)/k)1−γ and defining π(k) ≡ f ′(k)k/f(k) we find

η(k) = (1− γ)
(1− π(k))f ′(k)

1− δ + f ′(k)
≤ (1− γ)(1− π(k)) < 1− γ, (3.53)

where the first inequality is due to 0 ≤ δ ≤ 1 and the second to 0 < π(k) < 1,
which is an implication of strict concavity of f combined with f(0) ≥ 0. Thus,
η(k)−1 > (1 − γ)−1 so that if (*) holds for all k > 0, then so does (3.51), i.e.,
h′(k) > 0 for all k > 0. We have hereby shown that (*) is suffi cient for the
transition curve to be positively sloped everywhere.

Transition curve steep for k small Here we specialize further and consider
the CRRA-Cobb-Douglas case: u(c) = (c1−θ−1)/(1−θ), θ > 0, and f(k) = Akα,
A > 0, 0 < α < 1. In the prelude to Proposition 4 in Section 3.5 it was claimed
that if this combined utility and technology condition holds at least for small k,
then (ii) of (A3) is satisfied. We now show this.
Letting γ → 0 in (3.52) gives the Cobb-Douglas function f(k) = Akα (this

is proved in the appendix to Chapter 4). With γ = 0, clearly (1 − γ)−1 = 1
> 1 − σ, where σ ≡ θ−1 > 0. This inequality implies that (*) above holds and
so the transition curve is positively sloped everywhere. As an implication there
is a transition function, ϕ, such that kt+1 = ϕ(kt), ϕ

′(kt) > 0. Moreover, since
f(0) = 0, we have, by Lemma 5, limkt→0 ϕ(kt) = 0.
Given the imposed CRRA utility, the fundamental difference equation of the

model is

kt+1 =
w(kt)

(1 + n) [1 + (1 + ρ)σR(kt+1)1−σ]
(3.54)
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or, equivalently,

h(kt+1) =
w(kt)

1 + n
,

where h(kt+t) is defined as in (3.49). By implicit differentiation we find h′(kt+1)ϕ′(kt)
= w′(kt)/(1 + n), i.e.,

ϕ′(kt) =
w′(kt)

(1 + n)h′(kt+1)
> 0.

If k∗ > 0 is a steady-state value of kt, (3.54) implies

1 + (1 + ρ)σR(k∗)1−σ =
w(k∗)

(1 + n)k∗
, (3.55)

and the slope of the transition curve at the steady state will be

ϕ′(k∗) =
w′(k∗)

(1 + n)h′(k∗)
> 0. (3.56)

If we can show that such a k∗ > 0 exists, is unique, and implies ϕ′(k∗) < 1, then
the transition curve crosses the 45◦ line from above, and so (ii) of (A3) follows in
view of limkt→0 = 0.
Defining x(k) ≡ f(k)/k = Akα−1, where x′(k) = (α− 1)Akα−2 < 0, and using

that f(k) = Akα, we have R(k) = 1 + αx(k) − δ and w(k)/k = (1 − α)x(k).
Hence, (3.55) can be written

1 + (1 + ρ)σ(1 + αx∗ − δ)1−σ =
1− α
1 + n

x∗, (3.57)

where x∗ = x(k∗). It is easy to show graphically that this equation has a unique
solution x∗ > 0 whether σ < 1, σ = 1, or σ > 1. Then k∗ = (x∗/A)1/(α−1) > 0 is
also unique.
By (3.50) and (3.57),

h′(k∗) = 1 + (
1− α
1 + n

x∗ − 1) [1− (1− σ)η(k∗)] > 1 + (
1− α
1 + n

x∗ − 1)(1− η(k∗))

≥ 1 + (
1− α
1 + n

x∗ − 1)α,

where the first inequality is due to σ > 0 and the second to the fact that η(k) ≤
1− α in view of (3.53) with γ = 0 and π(k) = α. Substituting this together with
w′(k∗) = (1− α)αx∗ into (3.56) gives

0 < ϕ′(k∗) <
αx∗

1 + n+ αx∗
< 1, (3.58)

as was to be shown.
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The CRRA-Cobb-Douglas case is well-behaved For the case of CRRA
utility and Cobb-Douglas technology with CRS, existence and uniqueness of a
steady state has just been proved. Asymptotic stability follows from (3.58). So
the CRRA-Cobb-Douglas case is well-behaved.

3.10 Exercises

3.1 The dynamic accounting relation for a closed economy is

Kt+1 = Kt + SN (*)

where Kt is the aggregate capital stock and SNt is aggregate net saving. In the
Diamond model, let S1t be aggregate net saving of the young in period t and
S2t aggregate net saving of the old in the same period. On the basis of (*)
give a direct proof that the link between two successive periods takes the form
kt+1 = st/(1+n), where st is the saving of each young, n is the population growth
rate, and kt+1 is the capital/labor ratio at the beginning of period t + 1. Hint:
by definition, the increase in financial wealth is the same as net saving (ignoring
gifts).

3.2 Suppose the production function in Diamond’s OLG model is Y = A(αKγ +
(1−α)Lγ)1/γ, A > 0, 0 < α < 1, γ < 0, and Aα1/γ < 1+n. a) Given k ≡ K/L, find
the equilibrium real wage, w(k). b) Show that w(k) < (1+n)k for all k > 0. Hint:
consider the roof. c) Comment on the implication for the long-run evolution of
the economy. Hint: consider the ceiling.

3.3 (multiple temporary equilibria with self-fulfilling expectations) Fig. 3.10
shows the transition curve for a Diamond OLG model with u(c) = c1−θ/(1− θ),
θ = 8, ρ = 0.4, n = 0.2, δ = 0.6, f(k) = A(bkp + 1 − b)1/p, A = 7, b = 0.33,
p = −0.4.

a) Let t = 0. For a given k0 slightly below 1, how many temporary equilibria
with self-fulfilling expectations are there?

b) Suppose the young in period 0 expect the real interest rate on their saving
to be relatively low. Describe by words the resulting equilibrium path in
this case. Comment (what is the economic intuition behind the path?).

c) In the first sentence under b), replace “low”by “high”. How is the answer
to b) affected? What kind of diffi culty arises?

3.4 (plotting the transition curve by MATLAB) This exercise requires compu-
tation on a computer. You may use MATLAB OLG program.27

27Made by Marc P. B. Klemp and available at the address:
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Figure 3.10: Transition curve for Diamond’s OLG model in the case described in Ex-
ercise 3.3.

a) Enter the model specification from Exercise 3.3 and plot the transition
curve.

b) Plot examples for two other values of the substitution parameter: p = −1.0
and p = 0.5. Comment.

c) Find the approximate largest lower bound for p such that higher values of
p eliminates multiple equilibria.

d) In continuation of c), what is the corresponding elasticity of factor substi-
tution, ψ? Hint: as shown in §4.4, the formula is ψ = 1/(1− p).

e) The empirical evidence for industrialized countries suggests that 0.4 < ψ <
1.0. Is your ψ from d) empirically realistic? Comment.

3.5 (one stable and one unstable steady state) Consider the following Diamond
model: u(c) = ln c, ρ = 2.3, n = 2.097, δ = 1.0, f(k) = A(bkp + 1− b)1/p, A = 20,
b = 0.5, p = −1.0.

http://www.econ.ku.dk/okocg/Computation/main.htm.
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a) Plot the transition curve of the model. Hint: you may use either a program
like MATLAB OLG Program (available on the course website) or first a
little algebra and then Excel (or similar simple software).

b) Comment on the result you get. Will there exist a poverty trap? Why or
why not?

c) At the stable steady state calculate numerically the output-capital ratio,
the aggregate saving-income ratio, the real interest rate, and the capital
income share of gross national income.

d) Briefly discuss how your results in c) comply with your knowledge of cor-
responding empirical magnitudes in industrialized Western countries?

e) There is one feature which this model, as a long-run model, ought to incor-
porate, but does not. Extend the model, taking this feature into account,
and write down the fundamental difference equation for the extended model
in algebraic form.

f) Plot the new transition curve. Hint: given the model specification, this
should be straightforward if you use Excel (or similar); and if you use MAT-
LAB OLG Program, note that by a simple “trick”you can transform your
new model into the “old”form.

g) The current version of the MATLAB OLG Program is not adapted to this
question. So at least here you need another approach, for instance based on
a little algebra and then Excel (or similar simple software). Given k0 = 10,
calculate numerically the time path of kt and plot the time profile of kt, i.e.,
the graph (t, kt) in the tk-plane. Next, do the same for k0 = 1. Comment.

3.6 (dynamics under myopic foresight)
(incomplete) Show the possibility of a chaotic trajectory.

3.7 Given the period utility function is CRRA, derive the saving function of the
young in Diamond’s OLG model. Hint: substitute the period budget constraints
into the Euler equation.

3.8 Short questions a) A steady-state capital-labor ratio can be in the “dy-
namically effi cient” region or in the “dynamically ineffi cient” region. How are
the two mentioned regions defined? b) Give a simple characterization of the two
regions. c) The First Welfare Theorem states that, given certain conditions, any
competitive equilibrium (≡Walrasian equilibrium) is Pareto optimal. Give a list
of circumstances that each tend to obstruct Pareto optimality of a competitive
equilibrium.
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3.9 Consider a Diamond OLG model for a closed economy. Let the utility
discount rate be denoted ρ and let the period utility function be specified as
u (c) = ln c.

a) Derive the saving function of the young. Comment.

b) Let the aggregate production function be a neoclassical production function
with CRS and ignore technological progress. Let Lt denote the number of
young in period t. Derive the fundamental difference equation of the model.

From now, assume that the production function is Y = αL+ βKL/(K + L),
where α > 0 and β > 0 (as in Problem 2.4).

c) Draw a transition diagram illustrating the dynamics of the economy. Make
sure that you draw the diagram so as to exhibit consistency with the pro-
duction function.

d) Given the above information, can we be sure that there exists a unique and
globally asymptotically stable steady state? Why or why not?

e) Suppose the economy is in a steady state up to and including period t0 > 0.
Then, at the shift from period t0 to period t0 + 1, a negative technology
shock occurs such that the technology level in period t0 + 1 is below that of
period t0. Illustrate by a transition diagram the evolution of the economy
from period t0 onward. Comment.

f) Let k ≡ K/L. In the (t, ln k) plane, draw a graph of ln kt such that the
qualitative features of the time path of ln k before and after the shock,
including the long run, are exhibited.

g) How, if at all, is the real interest rate in the long run affected by the shock?

h) How, if at all, is the real wage in the long run affected by the shock?

i) How, if at all, is the labor income share of national income in the long run
affected by the shock?

j) Explain by words the economic intuition behind your results in h) and i).

3.10
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