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Abstract

Doubts have been raised about the efficiency of modern difference-in-difference estimators in

the vein of de Chaisemartin and D’Haultfœuille (2020) and Callaway and Sant’Anna (2021). I

show that these estimators in fact have attractive efficiency properties under a benchmark ‘strong

persistence’ assumption for errors: With non-staggered adoption and a balanced panel, they are

best unbiased estimators for any treatment effect. With staggered adoption, the estimators

remain efficient for estimating effects immediately at treatment onset but an adjusted ‘Stepwise

Difference-in-Differences’ estimator is the best unbiased estimator for all later effects. The

results provide a simple guide to estimator choice in practice.
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A string of recent papers have developed treatment effect estimators that apply to difference-in-

differences designs with hetereogeneous treatment effects and possible staggered treatment. While

this has been a boon for applied research, it has also placed a new burden of choice on applied

researchers. When analyzing a difference-in-differences design, researchers now need to make a

potentially very important choice of estimator. Moreover, statistical theory demands that the choice

be made ex ante; while prudent researchers often report results from many different estimators

for transparency, this practice can lead to problems if the preferred estimator is not specified in

advance.1 In this paper, I derive new theoretical results that help applied researchers choose between

the most common estimators in a simple but principled way.

For the canonical difference-in-differences design with an absorbing treatment and no covari-

ates, two broad groups of estimators have become popular and have been implemented in com-

monly used statistical software:2 The first group is what I term ’Subgroup Difference-in-Differences’

(SGDD). SGDD estimators selects particular subgroups of treated and untreated observations and

forms direct difference-in-differences comparisons beetween these groups (e.g. de Chaisemartin and

D’Haultfœuille (2020, 2022); Sun and Abraham (2021); Callaway and Sant’Anna (2021); see also

Dube et al. (2023)). The second group is what I refer to as ’Regression Imputation’ (RI) estimators.

RI estimators compare actual outcomes for treated units with imputed counterfactual outcomes

from a particular linear regression model (e.g. Borusyak et al. (2024); Gardner (2022); see also

Wooldridge (2021)).

In choosing between SGDD and RI estimators, efficiency considerations should play an important

role. In a given analysis sample, both groups of estimators are unbiased under the same assumptions

so picking the efficient alternative means getting more precise estimates using the same data and

assumptions. Based on existing results, however, efficiency comparisons between SGDD and RI are

lopsided and incomplete. While Borusyak et al. (2024) (BJS from now on) has established that RI is

the best unbiased estimator under spherical errors, the efficiency properties of SGDD estimators are

largely unknown. A particular concern is that SGDD estimators may have generally poor efficiency
1
A pertinent example is the case where a researcher produces estimates and confidence intervals using two or more

different estimators and then ex post has to decide whether a given parameter value is rejected by the data. Rejecting

only if the value falls outside both confidence intervals will lead to a lower than expected rate of false positives and

imply an unnecesary loss of power. Rejecting when the parameter falls outside just one of the confidence intervals

will inflate the rate of false positives.
2
Examples of STATA/R packages that implement SGDD estimators are did_multiplegt, csdid, eventstudyplot

and lpdid. Examples of packages that implement RI estimators are did_imputation and did2s.
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properties because they only use data on the single period just before treatment, thus ignoring

information from additional pretreatment periods.

This paper provides efficiency results for SGDD estimators. To do this, I use the same frame-

work as BJS but consider an alternative benchmark assumption on errors. While BJS’s spherical

errors assumption is a common benchmark, it is also an extreme benchmark in the sense that it

imposes no correlation in errors over time. Here I consider the opposite benchmark where errors

are strongly correlated over time. Specifically, I assume that errors follow a random walk, as will

be the case if errors reflect that units in the data are subject to permanent shocks. Many microe-

conomic processes are in fact modelled as being subject to permanent or strongly persistent shocks

so efficiency properties under this benchmark should be empirically relevant.

I first consider the case where treatment adoption is non-staggered, e.g. all eventually treated

units get treated in the same period. In this case, I show that SGDD estimators are the best

unbiased estimators for any weighted sum of treatment effects. This efficiency turns out to hold

exactly because SGDD estimators only rely on the last period prior to treatment: when errors reflect

persistent shocks, using data from any additional preperiod will only add additional noise stemming

from the shocks occuring in between this preperiod and treatment onset. This result thus also

provides a rigorous theoretical justification for the standard practice of choosing the last untreated

period as the baseline for difference-in-differences estimators. A simple simulation study adapted

from BJS show that the efficiency gains of SGDD can be substantial when errors are persistent:

Relative to RI estimators, SGDD provides efficiency gains that are equivalent to as much as 60

percent more data (21 percent smaller standard errors) when errors follow a random walk .

Next I consider the general case of staggered treatment adoption. In this setting, SGDD esti-

mators remain the best unbiased estimators for any weighted sum of contemperaneous treatment

effects at the time of treatment onset. For treatment effects at longer time horizons however, I

show that the best unbiased estimator is an adjusted estimator that I term ’Stepwise Difference-

in-Differences’ (SWDD). Instead of considering long differences across several time periods as the

SGDD estimator does, the SWDD estimator estimates treatment effects step-by-step in a series of

one-period-ahead comparisons. I clarify how this stepwise estimation leads to efficiency gains: un-

der staggered treatment adoption, the SWDD estimator is able to leverage data on more untreated

units at longer horizons. A simple simulation shows that the efficiency gains can be substantial:

3



Relative to SGDD, using SWDD under staggered adoption provides efficiency gains equivalent to

as much as 35 percent more data (14 percent smaller standard errors) when estimating effects 4

periods after treatment onset.

Combined with previous work, these results provide a simple principle for estimator choice in

practice: If the errors in outcome variable can be expected to exhibit low serial correlation - as is the

case if the errors reflect transitory shocks or idiosyncratic measurement error - RI should perform

well. Conversely, if the errors in outcome variable can be expected to exhibit high serial correlation

- as is the case if they reflect mostly persistent shocks - SGDD should perform well when estimating

short-run treatment effects or when adoption is non-staggered, while SWDD will improve efficiency

when estimating longer-run treatment effects under staggered adoption. Reanalyzing data from

the difference-in-differences design in Brenøe et al. (2024) I confirm the practical relevance of this

approach. The behavior of the outcome variables in Brenøe et al. (2024) range from nearly no serial

correlation in errors to near-random walk errors. Choosing the right estimator for each outcome

delivers reductions in the width of confidence intervals equivalent to as much as 50 percent more

data (18 percent smaller standard errors).

In addition to the direct implications for estimator choice in practice, this paper also makes some

technical contributions, particularly clarifying the relationship between estimators and underscoring

the versatilify of the methodology developed in BJS. In addition to relying on the BJS framework,

the proof techniques in this paper imply that both SGDD estimators and the adjusted SWDD

estimator can be viewed as an efficient RI estimator based on a particular linear regression model.

This extends the tools BJS provide for RI estimators to also apply for SGDD and SWDD estimators,

including their approach to computation, their approach to (fixed sample) inference as well as their

approach to addressing the pretrend test problems pointed out by Roth (2022).

The efficient SWDD estimator derived here also relates to other previous work. In their seminal

discussion of efficiency in difference-in-differences designs Marcus and Sant’Anna (2021) proposes

an alternative ’ny+’-estimator which they conjecture to have attractive efficiency properties. For

the same data and estimand, this estimator turns out to be equivalent to the SWDD estimator.

This paper thus establishes formal efficiency properties for the ’ny+’-estimator. Since the original

circulation of the present paper, Bellégo et al. (2024) has also proposed a class of ’Chained Difference-

in-Differences’ estimators to address complications arising when balanced panels are not available.

4



These estimators are also closely related to SWDD and the efficiency results in this paper apply to

them as well.

The focus of this paper is to help researchers choose between simple, popular difference-in-

differences estimators based on finite sample efficiency results under two error benchmarks. In data

sets where neither error benchmark is a good approximation however, more complex (multi-step)

estimators may provide additional efficiency gains, at least asymptotically in large samples. Earlier

work by Marcus and Sant’Anna (2021) provide a framework for asympotically efficient GMM.

Since the original circulation of this paper, BJS has described a natural Feasible GLS estimator

which is asymptotically efficient and bridges their RI efficiency results with the ones presented here.

Additionally, Arkhangelsky et al. (2021) and Clarke et al. (2023) have derived and implemented

a Synthetic Difference-in-Differences estimator which may also provide efficiency gains under some

error structures.

Finally, an alternative approach to estimator choice is to consider the extent of bias in estimators

under violations of the identifying assumptions (see e.g. Roth et al. (2023)), although this will

depend on the exact way in which the assumptions fails (see BJS). The online appendix for this

paper provides additional results in this direction by establishing robustness of the SGDD estimator

to a certain violation of parallel trends.

1 Framework and assumptions

Except for notation, I adopt the same fixed sample framework as BJS, treating the realized sample

and treatment timing as non-stochastic.3

The data set contain a number of units, i = 1, 2, ..., N , observed over several periods, t =

1, 2, ..., T . We are interested in the causal effect of a particular treatment on some outcome. Yi,t

is the outcome for unit i in period t, while Di,t is an indicator for whether i is treated in period t.

For ease of exposition, I assume that the data is a balanced panel throughout the main text. The

online appendix provides a simple extension of the main theorem to unbalanced panels.

I consider the standard case where treatment is an absorbing state meaning that for each unit

there is some period Ei when treatment occurs and Di,t switches from zero to one. Units that
3
See BJS for discussion and results that links the framework to a (super)population framework with random

sampling.
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are never treated correspond to Ei = 1. This nests both staggered treatment adoption and the

non-staggered case where treatment happens at single point in time. As noted, the analysis will

treat the observed data as containing a fixed set of units with a given treatment timing so Di,t and

Ei are non-stochastic.

For expositional convenience, I also define some additional variables and notation. I let K̄i = T�

Ei denote the number of additional post-treatment periods where i is observed and let K̄ = maxi K̄i

be the maximum number of such post-treatment periods observed for any unit in the data.

Averages over units that satisfy certain conditions will play a prominent role throughout the

text. I therefore adopt some simplifying notation here. For a statement Ai that depends on i, I

let 1
N

P

i:Ai

denote the average over those units i for which Ai evaluates as true.4 As an example, the

expression below corresponds to the the average period t outcome for units who are untreated at

time t+ k:

1
N

X

i:Di,t+k=0

Yi,t

1.1 Potential outcomes, treatment effects and estimands

Treatment effects are defined relative to a situation where units never experience the treatment.

Accordingly, Y 0
i,t

denotes the (unobserved) potential outcome for unit i in period t in a situation

where i never receives the treatment. Estimands of interests will build on individual treatment

effects at different time horizons relative to the onset of treatment. I let �i,h = E

h
Yi,Ei+h � Y

0
i,Ei+h

i

denote unit i’s treatment effect, at the time when they have experienced the treatment for h previous

periods. I refer to this as the horizon h treatment effect for i. Treatment effects at horizon h = 0

corresponds to the contemporaneous effect at the onset of treatment.

With these building blocks, I will consider the case where the estimand of interest is some

weighted sum of treatment effects at a specific horizon h: �w
h
=

P
i:K̄i�h

wi�i,h for some set of weight

{wi}i:K̄i�h
that may depend on observed treatment timing. This flexible formulation covers most

standard estimands in the literature. For example, one candidate for �
w

h
is the conditional average

horizon h treatment effect for units first treated at time t, written as CATTt,h = 1
N

P

i:Ki,t+h=h

�i,h.

4
The notation

1
N

P
i:Ai

is equivalent to the longer
1

#{i:Ai is true}
P

i:Ai is true
.
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Another example of an estimand that may serve as �
w

h
is the average treatment effect at horizon h

across all units in the sample observed at horizon h. We can write this as ATTh =
P

t
!t,CATTt,h

for appropriately defined sample share weights {!t}t=1,2,..,T .5 This estimand is a common target

parameter in applied work.

For most theoretical results however, I allow for the more general case where a researchers may

also be interested in averaging treatment effects across different horizons. This corresponds to the

general estimand �
w =

P
i,h:K̄i�h

wi,h�i,h for some set of weights {wi,h}i,h:K̄i�h
. Note that any

weighted sum of treatment effects at a particular horizon, �w
h

, is a special case of the more general

weighted sum �
w (with wi,h0 = 0 for all h0 6= h). It follows trivially that an estimator that is efficient

for any �
w will also be efficient for any �

w

h
.

1.2 Subgroup Difference-in-Differences estimators

Next, I define Subgroup Difference-in-Differences (SGDD) estimators for the estimands, �w
h

and �
w:

Definition. The Subgroup Difference-in-Differences estimators for the weighted sum of horizon h

treatment effects, �
w

h
, and the weighted sum of arbitrary treatment effects, �

w
, are defined as

c�w
h

SGDD

=
X

i:K̄i�h

wi�̂
SGDD

i,h (1)

c�wSGDD
=

X

i,h:K̄i�h

wi,h�̂
SGDD

i,h (2)

where

n
�̂
SGDD

i,h

o

i,h:K̄i�h

are individual-level treatment effect estimators, defined as

�̂
SGDD

i,h = (Yi,Ei+h � Yi,Ei�1)� 1
N

X

j:Dj,Ei+h=0

(Yj,Ei+h � Yj,Ei�1) (3)

To unpack this definition start by considering the individual-level treatment effect estimates in

(3). The first term is the change in i’s outcome from the last period before i is treated (t = Ei � 1)

until the period when i has been treated for h periods (t = Ei + h) . The second term subtracts
5
That is !t =

#{i:Kit+h=h}
#{i,t0:Kit0+h=h} .
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off the average corresponding change among an appropriate subgroup of ’relevant controls’. These

are units that remained untreated in the data over the entire period from Ei � 1 to Ei + h. With

an absorbing treatment and a balanced panel such ’relevant controls’ are characterized succintly by

having Dj,Ei+h = 0. Finally, to arrive at an estimator for the weighted sum of treatment effects,

the relevant weights are simply applied to the individual-level estimates as shown in (1) and (2).

For the same estimand, the SGDD estimator defined above is identical to the estimator of

de Chaisemartin and D’Haultfœuille (2020), the ’not-yet-treated’ estimator of Callaway and Sant’Anna

(2021) and the LP-DID estimator of Dube et al. (2023). In particular, note that if we set the esti-

mand �
w

h
to be CATTt,h, we arrive at the familiar expression:

\CATTt,h

DID

= 1
N

X

i:Ei=t

(Yi,t+h � Yi,t�1)� 1
N

X

j:Dj,t+h=0

(Yj,t+h � Yj,t�1)

Other modern difference-in-differences estimators fall within the class of SGDD estimators if one

extends the definition to allow for unbalanced panels. This includes the ’never-treated’ estimators

of Callaway and Sant’Anna (2021) and Sun and Abraham (2021). Formally, these estimators can

be viewed as dropping certain observations and then imposing identifying assumptions and forming

SGDD estimators only on the resulting unbalanced panel. As I return to in Section 2.3 and the

online appendix, the main theorem thus extends to these ’never-treated’ estimators as well.

1.3 Restrictions on treatment timing

Throughout the analysis, I will require that the data contains sufficient control units so that SGDD

estimators are well-defined. In a balanced panel, necessary and sufficient conditions for this are that

there is some untreated unit in the last period and that no units start out already treated:

Assumption 1. Sufficient Control Units: There exists some unit i such that Di,T = 0. Moreover,

for all units i we have Di,1 = 0.

Conditional on considering SGDD estimators this assumption is innocous. If it fails there is some

treated unit and post-period where no relevant untreated comparison units exist. Such units/periods

would always have to be dropped to apply SGDD.

For some of the results later, I will additionally consider the more restricted case where treatment
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adoption is non-staggered so that all units that are eventually treated receive the treatment at the

same time:

Assumption 2. Non-Staggered Adoption: For any pair of units (i, j) such that Ei, Ej 6= 1, we

have Ei = Ej.

1.4 Identifying assumptions

Identification will rest on two standard assumptions throughout. The first is a no anticipation

assumption:

Assumption 3. No Anticipation: Yi,t = Y
0
i,t

whenever Di,t = 0.

As written this assumption imposes that eventual treatment does not affect outcomes in periods

before treatment occurs. As is well known however, a simple relabeling of the treatment variable

covers cases where outcomes are affected some known number of periods before treatment occurs.

The second assumption will be a parallel trends assumption, imposing that outcomes move in

parallel in the absence of treatment:

Assumption 4. Parallel Trends: For any two periods t and t
0
, E

h
Y

0
i,t

� Y
0
i,t0

i
is constant across i.

This version of the parallel trends assumption is identical to the one in BJS using the same

framework, and equivalent to the assumption in de Chaisemartin and D’Haultfœuille (2020) and

Dube et al. (2023) when translated to the present (finite sample) framework. The assumption also

corresponds to the ’not-yet-treated’ approach of Callaway and Sant’Anna (2021) modulo a small

restriction on what constitues the first time period.6 As noted previously, the main results later also

apply also to a range of alternative approaches which restrict estimation to a subset of observations

and impose parallel trends only on this subset (see Section 2.3).

1.5 Error benchmark

Define "i,t = Yi,t�E [Yi,t] to be the error for unit i in time period t. Estimator efficiency will depend

on the behavior of these errors. BJS shows that RI is the best unbiased estimator when these errors
6
The ’not-yet’ treated approach of Callaway and Sant’Anna (2021) only uses observations - and only imposes

parallel trends - starting the period before the first unit gets treated. This corresponds restricting the data and

relabeling the time variable so that mini Ei = 2.
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are spherical, that is homeskedastic and serially uncorrelated. Spherical errors is a widely-used

benchmark. With regards to persistence, however, it is also an extreme benchmark since it imposes

that there is no correlation in errors over time. If we interpret the errors as reflecting shocks to

the units, serially uncorrelated errors corresponds to the assumption that shocks are completely

transitory.

In this paper, I instead consider the opposite benchmark that shocks are completely persistent.

This corresponds to imposing a random walk assumption on the errors, i.e. that the differences

in the errors are homoskedastic and serially uncorrelated. Formally, I define ⌘i,t = "i,t � "i,t�1 to

be the shock to unit i at time t and let ⌘ denote the correpsonding NT -dimensional vector of all

shocks. I then consider the following assumption:

Assumption 5. Random Walk Errors: The shocks ⌘ are mean zero, homoskedastic and uncorrelated

over time and units: E (⌘) = 0, V ar (⌘) = INT�
2
.

It is worth emphasizing that I use this assumption only as a benchmark to characterize when

the different estimators have attractive efficiency properties. Neither the SGDD estimator, the RI

estimator or the SWDD estimator introduced later require Random Walk Errors to be unbiased.

The assumption will also not be necessary for inference. As usual, standard cluster-robust inference

is likely to be the preferred approach in most settings.

2 Theoretical efficiency results

I now present my results on efficient estimation along with simple proofs and discussion.7 As usual

when studying unbiased estimators, I use the term ’best estimator’ to refer to the estimator with

the lowest possible variance.

2.1 Efficiency under non-staggered adoption

The first result establishes that the commonly-used SGDD estimators are efficient when treatment

adoption is non-staggered and errors are strongly persistent:

7
The online appendix provides expanded proofs also covering the case of unbalanced panels.
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Proposition 1. Assume that there is Sufficent Control Units, No Anticipation, Parallel Trends,

Random Walk Errors, and Non-Staggered Adoption. Then the best unbiased estimator of any treat-

ment effect �
w

is the Subgroup Difference-in-Differences Estimator, c�wSGDD
.

Proof. The proposition follows as a special case of Theorem 1 below.

Proposition 1 establishes that the SGDD estimator utilizes the data efficiently (formally it establishes

SGDD as an admissible estimator). In terms of the cross-sectional variation across units, this

efficiency should be unsurprising. Assuming Random Walk Errors implies that shocks have the

same variance across units and SGDD involves simple averages across units.

It might be more surprising that the SGDD estimator also exploits data efficiently in the time

dimension. When estimating the horizon h treatment effect for some unit, the SGDD estimator only

uses data from h periods after treatment and from the single period immediately before the onset

of treatment. As emphasized by BJS, however, there should generally be many more preperiods

available which could also be used for estimation.

Formally, the efficiency of SGDD turns out to reflect its analogy with first-difference estimators

for panel data (see the proof of Theorem 1). To build direct intution for this efficiency property,

however, consider estimating the horizon h treatment effect for some specific unit i that gets treated

at Ei. For ease of exposition, additionally assume that at Ei + h there is only a single unit j that

remains untreated. Using the units i and j, there are now many different difference-in-differences

comparison we could consider in estimation: For some arbitrary baseline period b < Ei, let �̂
ALT

i,h

be the comparison that goes from period b to period Ei + h:

�̂
ALT

i,h = (Yi,Ei+h � Yi,b)� (Yj,Ei+h � Yj,b)

Under Parallel Trends and No Anticipation this can be rewritten as:

�̂
ALT

i,h = �i,h +
Ei+hX

k=b+1

(⌘i,t � ⌘j,t) (4)

Equation (4) shows that the difference-in-difference comparison �̂
ALT

i,h
is an unbiased estimator;

it equals the treatment effect of interest, �i,h, plus a (mean zero) noise term. This noise term is a

sum over differences in the idiosyncratic shocks ⌘i,t and ⌘j,t that the units experience each period
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from the baseline period b and until the postperiod Ei + h. Under Random Walk Errors, however,

these shocks are serially uncorrelated. This yields two conclusions:

First, to get the smallest variance in our difference-in-difference comparision, �̂ALT

i,h
, we should

choose the latest possible preperiod as the baseline (b = Ei � 1) because this implies that the noise

term includes as few shocks as possible. This choice of baseline period, however, means that �̂
ALT

i,h

is equal to the SGDD estimator, �̂SGDD

i,h
.

Second, if we consider difference-in-difference comparisons that use some earlier preperiod as the

baseline, b < Ei�1, equation (4) shows that the difference between �̂
ALT

i,h
and �̂

SGDD

i,h
is simply that

the noise term for �̂ALT

i,h
will include more serially uncorrelated shocks. These additional shocks will

only add additional variance and lower precision.

Summing up, the example illustrates that the SGDD estimator is efficient under strongly persis-

tent errors exactly because it only uses the last period before treatment onset. Considering earlier

preperiods only adds additional noise from earlier shocks. The arguments and intuition goes through

unchanged if we consider the general case of having more untreated units or estimating weighted

averages of individual treatment effects. Note that the arguments above also provide a rigorous

justification for the general practice of using the last period prior to treatment as the baseline in

difference-in-differences.

2.2 Efficiency with staggered adoption

Next, I turn to the more general case of staggered adoption where units may enter treatment

at different times. The efficient estimator in this case turns out to be an adjusted difference-in-

differences estimator that I term ’Stepwise Difference-in-Differences’ (SWDD):

Theorem 1. Assume that there is Sufficent Control Units, No Anticipation, Parallel Trends and

Random Walk Errors. Then the best unbiased estimator of any treatment effect �
w

is the Stepwise

Difference-in-Differences estimator, c�wSWDD
, which is defined as:

c�wSWDD
=

X

i,h:K̄i�h

wi,h�̂
SWDD

i,h

where

n
�̂
SWDD

i,h

o

i,h:K̄i�h

are individual-level treatment effect estimators, defined as

12



�̂
SWDD

i,h =
hX

k=0

2

4(Yi,Ei+k � Yi,Ei+k�1)� 1
N

X

j:Dj,Ei+k=0

(Yj,Ei+k � Yj,Ei+k�1)

3

5 (5)

.

Proof. For k = 0, 1, ..., K̄, let Hk
i,t

be a dummy for whether at time t, unit i is treated

and has experienced the treatment for exactly k previous periods:

H
k

i,t =

8
><

>:

1 if t� Ei = k

0 otherwise

The assumptions of No Anticipation and Parallel Trends then implies that the data

satisfies the following model (see for example BJS):

Yi,t = ↵i + �t +
K̄X

k=0

H
k

i,t�i,k + "i,t , E ["i,t] = 0 (6)

Mirroring a well-known result regarding efficient estimation in panels with random

walk errors, the proof proceeds by considering the first-differenced version:

�Yi,t = ��t +
K̄X

k=0

�H
k

i,t�i,k +�"i,t , E [�"i,t] = 0 (7)

Under the assumption of Sufficient Control Units, any individual treatment effect

of interest, �i,h, is identified in (7) and applying OLS will yield the unbiased estimator

�̂
OLS

i,h
. Under Random Walk Errors a standard application of the Gauss-Markov Theorem

to panel data implies that these these OLS estimators are the best unbiased estimators of

the individual treatment effects {�i,h}i,h:K̄i�h
. Moreover, taking their linear combination

c�wOLS
=

P
i,h:K̄i�h

wi,h�̂
OLS

i,h
will yield the best unbiased estimator of �w.

Finally, simple algebra shows that the Regression Imputation Theorem of BLS can

be applied in (7) to characterize the closed form of the efficient estimator c�wOLS . This

turns out to equal the SWDD estimator.

�
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To understand why Stepwise Difference-in-Differences is an appropriate name for this efficient

estimator, consider the expression for the individual-level estimator, �̂SWDD

i,h
in (5). The expression

inside brackets is simply a one-period-ahead difference-in-differences comparison involving a one

period change in the outcome for unit i and the corresponding average change among untreated

units. Taking into account the outer sum shows that the SWDD estimator is simply a sum over

h+1 such one period difference-in-differences. In other words, where the SGDD estimators estimate

the horizon h treatment effect by comparing the total change in the outcome from Ei � 1 to Ei + h

across treated and untreated units, the SWDD estimator can be seen as working step-by-step: It

first constructs a series of one-period-ahead comparions and then sums these up to arrive at the

final estimate.

To better understand how and why the SWDD estimator differs from SGDD, first rewrite the

individual-level SWDD estimator as:

�̂
SWDD

i,h =
hX

k=0

(Yi,Ei+k � Yi,Ei+k�1)�
hX

k=0

0

@ 1
N

X

j:Dj,Ei+k=0

(Yj,Ei+k � Yj,Ei+k�1)

1

A

Then note that the first sum over k immediately telescopes:

�̂
SWDD

i,h = (Yi,Ei+h � Yi,Ei�1)�
hX

k=0

0

@ 1
N

X

j:Dj,Ei+k=0

(Yj,Ei+k � Yj,Ei+k�1)

1

A

The first term in this expression is identical to the first term in the expression for the individual-

level SGDD estimator and is simply the total change in the outcome of the treated unit i between

Ei�1 and Ei+h. The difference between the SWDD and the SGDD estimators thus come entirely

from the second term, which relates to the untreated units.

Now consider what happens if no unit switches from treated to untreated over the period Ei

to Ei + h. In this case the set of untreated units is unchanged over these periods so the second

sum over k also telescopes and will just equal the average total change in the outcome among these

units:

hX

k=0

0

@ 1
N

X

j:Dj,Ei+k=0

(Yj,Ei+k � Yj,Ei+k�1)

1

A = 1
N

X

j:Dj,Ei+h=0

(Yj,Ei+h � Yj,Ei�1)

14



This is the second term in the expression for the SGDD estimator. When no unit switches from

treated to untreated over the period Ei to Ei+h the SWDD estimator and SGDD estimator are thus

equivalent. This shows the connection between Proposition 1 and Theorem 1: under non-staggered

adoption if some unit is treated at Ei, all units that are untreated at Ei remain untreated forever.

SGDD is therefore always equivalent to the efficient SWDD estimator in this case.

In general with staggered adoption however there may be some units that are untreated at Ei

but have switched into treatment by period Ei + h. Such units give rise to the efficiency gains of

SWDD over SGDD: Because these units are not observed as untreated at both Ei � 1 and Ei + h,

these units are never included as controls in the SGDD estimator. In constrast, they will be included

in some of the one-period comparisons used in the SWDD estimator. Under Random Walk Errors,

leveraging such additional untreated units is guaranteed to improve efficiency. See Section D of the

online appendix for a simple visual illustration of the above.

An implication of the discussion above is that the efficiency gains of SWDD over SGDD will be

larger when estimating effects at longer horizons. When looking at a longer horizon h, there will

mechanically be more units who switch from treated to untreated over the periods from Ei to Ei+h

and therefore drop out the SGDD estimator. Conversely, in the extreme case where a researcher is

interested only in the contemporaneous treatment effect at horizon h = 0, no such units drop out

of the SGDD estimator and the SWDD and SGDD estimators always coincide. This immediately

yields the following corollary:

Corollary 1. Assume that there are Sufficent Control Units, No Anticipation, Parallel Trends and

Random Walk Errors. Then the best unbiased estimator of any horizon 0 treatment effect, �
w
0 , is

the Subgroup Difference-in-Differences estimator, c�w0
SGDD

.

For researchers who care only about contemporanoues treatment effects immediately at the onset

of treatment, SGDD estimators thus retain their efficiency under staggered adoption.8

2.3 Additional results and discussion

I close this section with two additional remarks regarding the theoretical results. First, the online

appendix extends Theorem 1 to cover various forms of unbalanced panels. In addition to addressing
8
A related case where SGDD can also remains efficient is if the periods where treatment adoption happens are

sufficiently spaced out over time. See Section C of the online appendix for details.
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possible missing data, this also extends the theorem to cases where researchers exclude certain

observations in order to use a weaker version of parallel trends: since the identifying assumptions

only need to hold across observations included in estimation, dropping observations means that a

weaker version of parallel trends is required for unbiasedness. The general version of Theorem 1

imply that SWDD is the best unbiased estimator in these cases as well. A particularly notable case

is the ’never-treated’ approach of Callaway and Sant’Anna (2021)and Sun and Abraham (2021)

which effectively restricts the data by dropping all but the last pretreatment observation for each

treated unit. Under this data restriction however, SGDD turns out to always be equivalent to the

efficient SWDD estimator. In the ’never-treated’ approach, SGDD is thus efficient with persistent

errors even when adoption is staggered.

Second, in addition to their practical implications, the results above help clarify the relationship

between estimators. The last step in the proof of Theorem 1 shows that the SWDD estimator

can be viewed as an efficient RI estimator for a first-differenced regression model. Moreover, the

online appendix extends this to show that any SGDD estimator of treatment effects at a particular

horizon can be seen as an efficient RI estimator from a particular regression model. As a result,

the tools provided by BJS for RI estimators also apply to SGDD and SWDD estimators, including

their approaches to computation and (cluster-robust) inference. A Stata package implementing

SWDD estimation and inference in this way is available on my website (did_stepwise.ado). The

package also implements extensions of the SWDD estimator to cover estimation with predetermined

covariates (as in BJS), and to examine the identifying assumption by estimating pretrends.9

3 Numerical results

To provide simulation evidence on efficiency, I add persistent errors into a simulation originally

introduced by BJS. Using the notation from Section 1, the data contains 250 units, observed over

the periods t = 1, 2, ..., 6. Following BJS, I draw treatment assignment once under the assumption

that Ei is iid uniform on {2, 3, ..., 6,1} and then generate 500 simulations according to the following

model:
9
See Section E of the online appendix.
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Yi,t = ↵i + �t +
4X

k=0

H
k

i,t�i,k + "i,t

↵i = �Ei

�t = 3t

�i,h = 1 + h

"i,t =⇢"i,t�1 + ⌘i,t

To impose Random Walk Errors, the baseline simulation uses ⇢ = 1, "i,1 = 0, ⌘i,t
iid⇠ N

⇣
0,
q

2
5

⌘
.10

For each simulation and each horizon h = 0, 1, .., 4, I produce estimates of ATTh, using both the

SGDD and SWDD estimators. As a benchmark, I also produce estimates using the RI estimator of

BJS. Panel A of Table 1 shows results. For each estimand, the table reports the simulated variance

of each estimator relative to the most efficient of the three estimators. Results for theoretically

efficient estimators are in italic. Columns correspond to different variations of the simulation setup

as detailed below.

The first column shows that under Random Walk Errors, both the SGDD and SWDD estimators

perform very well at short horizons. At horizon 0, where SGDD/SWDD is efficient, the variance of

the RI estimator is 64 percent larger than that of the SGDD/SWDD. At horizon 1 the variance of

RI is 25-33 percent larger. The efficiency gains of SWDD/SGDD are thus equivalent to having 25-64

percent more data (variance inverse proportional to sample size) or to an 11-22 percent reduction

in standard errors.

Since the simulation has staggered adoption, only the SWDD estimator is theoretically efficient

at longer horizons. Additional results in the first column show that the SWDD estimator indeed

provides considerable efficiency gains over SGDD at longer horizons. At horizon 3 and 4, the

variance of the SGDD estimator is 26-36 percent larger than for SWDD. Moreover, for these longer

horizons, we in fact see that the RI estimator also outperforms SGDD with an efficiency loss of only

13-16 percent relative to SWDD. This reflects that at longer horizons the RI estimator leverages

more untreated units in the same way that SWDD does.

10
The standard deviation of

q
2
5 ensures that V ar("i,t,) increases linearly from 0 to 2 over the sample periods.
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Table 1: Comparing estimator variance in simulated and real data

Panel A: Simulations with varying error benchmarks

Random Walk AR(1) AR(1) Non-stag.,

Errors ⇢ = 0.8 ⇢ = 0.5 RW Errors

Simulated variance relative to best shown estimator:

Subgroup DID
Horizon 0 1.000 1.000 1.000 1.000
Horizon 1 1.060 1.047 1.075 1.000
Horizon 2 1.161 1.061 1.040 1.000
Horizon 3 1.262 1.198 1.146

Horizon 4 1.364 1.199 1.188

Stepwise DID
Horizon 0 1.000 1.000 1.000 1.000
Horizon 1 1.000 1.000 1.092 1.000
Horizon 2 1.000 1.000 1.073 1.000
Horizon 3 1.000 1.000 1.073

Horizon 4 1.000 1.000 1.000

Regression Imputation
Horizon 0 1.644 1.527 1.075 1.555

Horizon 1 1.328 1.223 1.000 1.290

Horizon 2 1.195 1.055 1.000 1.193

Horizon 3 1.160 1.052 1.000

Horizon 4 1.127 1.016 1.005

Panel B: Outcome variables from Brenøe et al. (2024)

Total births Total leave Number of Total firm

at firm days at firm employees sales

Raw residual autocorrelation: 0.087 0.218 0.645 0.712

Nickell-corrected AR(1) coef.: 0.187 0.334 0.833 0.920

Estimated variance relative to best shown estimator:

Subgroup DID/Stepwise DID
Horizon 0 1.530 1.354 1.000 1.000

Horizon 1 1.352 1.308 1.000 1.000

Horizon 2 1.396 1.342 1.000 1.000

Horizon 3 1.363 1.379 1.000 1.000

Regression Imputation
Horizon 0 1.000 1.000 1.383 1.510

Horizon 1 1.000 1.000 1.226 1.201

Horizon 2 1.000 1.000 1.179 1.119

Horizon 3 1.000 1.000 1.161 1.080

The table compares estimator variance when estimating ATTh at different horizons. Panel A shows

simulation results. Columns correspond to different variations of the simulation. For each simulation

and estimand, the table reports the simulated variance of the estimator relative to the best alternative.

Italic denotes theoretically efficient estimators. Panel B shows results based on data in Brenøe et al.
(2024). Columns correspond to different outcome variables. The first two rows shows measures of the

error autocorrelation for each outcome variable using untreated firms across 13 years. The first row

shows the raw autocorrelation in residuals from a TWFE model, the second row shows Nickell-corrected

estimates assuming AR(1) errors. The remaining rows compares the different estimators. For each

outcome variable and estimand, the table reports the estimated variance of the estimator relative to the

best alternative. Treatment is non-staggered so SWDD and SGDD are equivalent in these data.
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In practice of course, few data sets are likely to exhibit Random Walk Errors exactly. The

second column compares estimators under the less extreme persistence assumption of AR(1) errors

with parameter ⇢ = 0.8 (and V ar("i,t,) = 1). The relative performance of the estimators is quite

similar in this case, although - as should be expected - the differences are less stark.

The third column consider AR(1) errors with parameter ⇢ = 0.5. Mechanically, this is halfway

between the ideal case for SWDD ( ⇢ = 1) and the ideal case for RI ( ⇢ = 0). We in fact see that

SWDD and RI perform similarly here. Again however, SGDD shows a substantial efficiency loss at

longer horizons.

Finally, the fourth column returns to Random Walk Errors but considers a non-staggered sim-

ulation where all eventually treated units have Ei = 4 (so treatment effects are defined only up to

horizon 2). In this case SGDD and SWDD are theoretically equivalent and efficient at all horizons.

Accordingly, both provide substantial efficiency gains relative to RI.

3.1 Practical relevance of estimator choice based on the error benchmarks

Results above suggest that there may be substaintal efficiency gains from choosing estimator based

on the whether the outcome variables is subject to mostly impersistent shocks (closer to spherical

errors) or mostly persistent shocks (closer to random walk errors). As a check on the practical

relevance of this, I examine data from Brenøe et al. (2024) (BCHH from now on). Using yearly

Danish administrative data from 2001-2013, BCHH applies a non-staggered difference-in-differences

design to estimate the causal effect on firms when one of their female employees gives birth and goes

on parental leave. BCHH is an interesting case study because of its diverse set of outcomes variables.

Closely related data and research designs have also appeared frequently in the literature (see for

example Jäger and Heining (2022), Bertheau et al. (2022) and Schmutte and Skira (2023)). Panel

B of Table 1 adapts the BCHH data to match the setup of the current paper and then compares

estimator performance across four different firm outcome variables: Total births among employees,

total leave days, number of employees and total sales.11

Before comparing estimator performace, Table 1 first provides evidence on the practical relevance

of the random walk errors benchmark. The first rows of the table show two measures of the
11

See the online appendix for additional details of the BCHH data and corresponding results for all outcome

variables.
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error persisence in each outcome variable, computed using untreated firms over all 13 years in

the data. The first row shows the raw autocorrelation in residuals from a TWFE effect model (a

consistent estimator of error autocorrelation as T �! 1) , while the second row shows the Nickell

(1981)-corrected autocorrelation (a consistent estimator as N �! 1 if errors are AR(1)). The

measured autocorrelations range from 0.087 to 0.920. This confirms the empirical relevance of both

the spherical error benchmark (true autocorrelation of 0) and the random walk benchmark (true

autocorrelation of 1).

The remaining rows of Panel B compares RI and SGDD/SWDD on the BCHH data. For

each estimator, the usual cluster-robust standard errors are computed and the estimated variances

(squared standard errors) are compared.12 Conclusions closely mirror those from the simulation.

SGDD/SWDD performs better for outcome variables with persistent errors, while RI performs

better for outcome variables with impersistent errors. The estimated precision gains from choosing

the right estimator also appear substantial, equivalent to as much as 50 percent more data or 18

percent smaller standard errors.

4 Conclusion: Estimator choice in practice

When analyzing difference-in-differences designs, researchers face a choice between several popu-

lar estimators that require the same assumptions for unbiasedness. This paper provides a set of

new efficiency results under persistent errors. Together with previous results, these enable applied

researchers to make a simple, principled estimator choice aimed at improving precision.

If the outcome variable is likely to be characterized by mostly impersistent errors (e.g. tran-

sitory shocks or measurement errors), Regression Imputation estimators in the vein of Borusyak

et al. (2024) are likely to perform well for estimating any treatment effect. If the outcome vari-

able is instead likely to be characterized by very persistent errors (persistent shocks), Subgroup

Difference-in-Differences estimators in the vein of de Chaisemartin and D’Haultfœuille (2020) and

Callaway and Sant’Anna (2021) should perform well if estimating treatment effects immediately at

treatment onset, or if treatment adoption is non-staggered. If researchers are also interested in later
12

Standard errors are clustered on the unit (firm). I implement the RI estimator via the did_imputation Stata

package and implement SGDD/SWDD via my own did_stepwise package which relies did_imputation for com-

putation of standard errors. Results are numerically equivalent if using csdid with analytical, pointwise standard

errors.
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time horizons and treatment adoption is staggered, the adjusted Stepwise Difference-in-Differences

estimator provides additional efficiency gains under persistent errors. A Stata package implementing

Stepwise Difference-in-Differences is available on my website (did_stepwise.ado).

To help applied researchers distinguish outcomes with persistent and impersistent errors, two

remarks are in order. First, it bears clarifification that what matters for estimator efficiency is not

the persistence of the outcome variable itself but only the persistence of its errors. A survey measure

of a person’s weight, for example, will typically be very persistent over time but may have completely

impersistent errors if reported weight only fluctuates because of measurement error. Second, the

following question may serve as a useful heuristic for determining error persistence from theory

or institutional knowledge: If a given unit at some point experiences an increase in the outcome

variable relative to other units, what is the natural expectation for this unit next period? Under

impersistent (spherical) errors, the outcome should tend to drop back down relative to other units

in data. Under persistent (random walk) errors, the outcome should instead tend to stay high.

The results also suggest avenues for future work. First, the stepwise adjustment underlying

Stepwise Difference-in-Differences can likely be adapted to offer efficiency gains also outside the

canonical difference-in-differences setting. Second, as noted in the introduction, there may be cases

where researchers can achieve additional efficiency gains by using more complex GMM, Feasible

GLS or Synthetic DID approaches. To help harvest such additional efficiency gains, future work

can develop good practical implementations of the former two methods and provide additional

evidence on the finite sample performance of all relevant methods.
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