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1. Introduction

In a seminal contribution Samuel Preston (1975) documented a striking empirical fact: In

a cross-section of countries higher levels of income per capita are associated with greater life

expectancy; the curve that fits the data best – dubbed “the Preston curve” by later research

– is concave. This discovery served to promote the idea that prosperity leads to greater

longevity, and that income inequality works to lower average longevity; the latter being a

consequence of the observed concavity of the mapping between income and life expectancy.1

These are powerful ideas, which continue to be influential. As Bloom and Canning (2007, p.

498) observe: “Samuel H. Prestons classic paper, ‘The Changing Relation between Mortality

and Level of Economic Development’, published in 1975, remains a cornerstone of both global

public health policy and academic discussion of public health.” Despite its prominence,

however, the interpretation of the Preston curve continues to be shrouded in mystery. Does

the slope of the curve reflect a causal impact of income per se? Or is income perhaps a stand-

in for other underlying correlates with longevity and income, such as efficiency differences in

health care? Deaton (2003, p. 152) formulates the key challenge for research in this area

succinctly: “If income is indeed directly protective, we need to know whether the effect is

really nonlinear [...] because it is this [...] that determines whether and by how much income

redistribution can improve population health”. The objective of the present research is to

offer some progress in this regard.

We employ a theory-driven approach in order to elucidate the mechanisms underlying the

shape and position of the Preston curve. In order to understand human longevity we need

to understand the determinants of the process which culminates in death: the aging process

(Arking, 2006). We therefore develop a life-cycle model, for a representative member of a

cohort, who is subject to physiological aging. In modeling the aging process we draw on

recent research in the fields of biology and medicine. This approach has the advantage that

estimates for key physiological parameters influencing the aging process are available to us;

1 A second observation made in the paper was that the curve shifts upwards over time, implying greater
longevity at all levels of income per capita. Preston hypothesized that these shifts represented improvements
in health technology (broadly defined), and noted that the shifts accounted for the lions share of global
improvements in longevity over time.
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this is what facilitates a credible calibration of life expectancy. In our model the individual

consumes, saves, and makes deliberate investments in slowing down the aging process, thereby

postponing the “date of expiry”. This model allows us to study the impact from, for example,

changes in income and health care efficiency on changes in longevity.

With the model in place we subsequently calibrate it to U.S. data, and proceed to examine

the calibrated model’s ability to account for the cross-country income gradient in the year

2000, as reflected in the Preston curve. Accordingly, using income data for a cross section

of countries as “input” we ask the model to predict the associated levels of life expectancy

for those countries, which we then compare to the estimated income gradient. Since the

model is calibrated for the U.S. such that income matters for health and life-expectancy, it is

unsurprising that it predicts a positive correlation between income and life-expectancy across

countries. What is striking, however, is that the model does a good job at predicting the

position and slope of the Preston curve.

When we predict longevity using our model we are keeping the relative price of health goods

(to non-health goods) in efficiency units fixed at the U.S. level. Empirically, the (efficiency

adjusted) price of health is likely correlated with income across countries. Such variation can,

according to our model, account for the left-over residual. While the model does not allow us

to decompose the residual, it undoubtedly captures a range of factors such as cross-country

variation in relative prices of health goods; climate (influences disease prevalence, and thus

attainable longevity at given health investment rate); health care institutions (influences how

many years a given dollar amount of investment can buy) and more.2 The main message from

the analysis, however, is that the Preston curve indeed seems to capture a strong causal effect

of income through health investments on longevity.

2 The Preston curve may also be capturing - in part at least - an impact of longevity on income. Since
our model deliberately abstracts from this causal mechanism, instead distilling the power of the income-to-
longevity mechanism, this sort of influence would also go into the left-over residual. At the same time it is
worth noting that there is an ongoing debate about the impact of life expectancy on growth. See e.g. the
interesting exchange between Acemoglu and Johnson (2007), Hazan and Zoabi (2006) and Hazan (2009), who
suggest a modest (if any) effect of life expectancy on growth, and Cervalletti and Sunde (2010, 2011) who
argue for a positive impact of longevity on growth.
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The proposed theory is centered around a novel approach to the modeling of aging. Based

on research from the natural sciences, we conceptualize the process of aging as one whereby

the human organism gradually looses redundancy and thus becomes more fragile. This leads

us to a law of motion for human frailty, which depends on physiological parameters and

health expenditures. The process of increasing frailty is relentless and accelerating with

increasing age, but it may be slowed by health investments. The incentive to slow down

aging is a longer life, which facilitates greater consumption and thus utility. The costs of

doing so is foregone utility from consumption of goods that do not serve to prolong life. In

a setting where individuals are maximizing lifetime utility from consumption we examine

the optimal intertemporal choice with respect to savings and health investments. Subject

to the physiological constraints faced by humans, and the standard budget constraint, this

allows us to characterize the optimal speed of aging and thereby optimal longevity. The aging

process (and time of death) is thus endogenously determined by optimal health investments.

The physiological foundation of the aging process, as implemented in the analysis, implies

that the key parameters have been estimated with great precision in the medical science

literature. This is in large part what enables us to calibrate the model in a meaningful way,

and quantitatively confront the foundation of the Preston curve.

Our analysis is primarily related to the seminal work of Grossman (1972) on the demand

for health and to Ehrlich and Chuma’s (1990) important work on optimal longevity.3 A key

theoretical difference between our work and previous contributions lies in the law of motion

which governs the aging process; the counterpart to the law of motion for health capital in the

existing literature. We elaborate on the broader differences between the standard approach

to health capital accumulation and our proposed approach below. Another difference is that

3 Other notable contributions in this tradition are Reid (1998), Eisering (1999) and Foster (2001). Also
related are contributions investigating the evolution of life expectancy at the aggregate level; see Cervellati
and Sunde (2005) and Galor and Moav (2007).
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we employ our model to examine the underlying forces that shape the Preston curve from a

quantitative angle; this has not been attempted in the existing literature.4

A few remarks on the setup are warranted. First, one could imagine that health investments

also stimulate productivity, which inevitably influences the income—longevity correlation in

the cross-country data. In the present context, however, we are interested in understanding the

potential strength of the causal mechanism running from income to longevity; this objective

is compromised if we admit the reverse chain of causality to be present in the model, for

which reason it is suppressed. Second, in our model health matters for the time horizon,

but does not enter the per period utility function. Here we follow Becker (2007) and use a

standard utility function for consumption goods implying that any explanation for the health

gradient results from the budget constraint. Finally, the accumulation of health deficits

and death itself are clearly stochastic events from the individual viewpoint. In order to get

some nicely interpretable analytical results we follow the conventional literature of Grossman

(1972), Ehrlich and Chuma (1990), and Hall and Jones (2007) and focus on a deterministic

framework. At the expense of analytical tractability, uncertain lifetime, as well as utility from

state of health, can be integrated into the framework developed below without substantial

implications for the key results (see Strulik, 2011, 2012).

The paper proceeds as follows. In the next section we derive the key law of motion that

characterizes the aging process, and we discuss how this law of motion differs from the stan-

dard health accumulation equation. Section 3 contains the main analysis of optimal aging

and death. In Section 4 we calibrate the model to U.S. data and examine its predictions as

well as its dynamical properties in the presence of shocks to income, technology and more.

Then, in Section 5, we apply the model to the study of the Preston curve. Finally, Section 6

is reserved for concluding remarks.

4 Methodologically, our study is also related to macro contributions that try to sort out the strength of causal
mechanisms that are hard to identify econometrically in the aggregate level, by way of model simulation.
Prominent examples are Bils and Klenow (2000) on the link between human capital and growth and Manuelli
and Seshadri (2009) on income and fertility.
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2. Introducing Biological Aging

2.1. Modeling Human Aging as a Process of Deficit Accumulation. Aging is defined

as the intrinsic, cumulative, progressive, and deleterious loss of function that eventually cul-

minates in death (Arking, 2006). At the individual level the aging process exhibits great

heterogeneity, and is only imperfectly captured by chronological age; some 60 year-olds are

as fit as some 40 year-olds and vice versa. Indeed, biologists and gerontologists stress that

individual aging should be viewed as an event-dependent process, rather than as a time-

dependent process. There is no such thing as a “biological clock”, which determines the

speed of individual aging and timing of death.

At the population level, however, age is a better predictor of aging and death. The so-called

Gompertz-Makeham law of mortality implies that the force of mortality, i.e. the conditional

probability to die at age x given survival up to age x, increases exponentially with age.5 An

increasing force of mortality is obviously a manifestation of the aging process. But then why

is the force of mortality increasing with age?

A reductionist approach might suggest that the organism ages because of aging organs,

which in turn is caused by aging tissue, brought on by the aging of cells and so on. Such an

approach, however, is a dead end. The reason is that, eventually, a level of “disaggregation” is

reached, which consists of non-aging entities: atoms, for example. The aging process can not

be understood in this manner. But how can a system constructed from non-aging components

age in the manner suggested by the Gompertz-Makeham law of mortality?

A promising strand of literature in biology has sought an answer by drawing on reliabil-

ity theory from engineering.6 To understand the basic idea, consider the following model

(Gavrilov and Gavrilova, 1991). Suppose we view the organism as a whole as consisting of a

fixed number of individual parts, which we will refer to as “blocks”. Each block does not age.

That is, the failure rate of a block is constant. This assumption captures that the human

5 More precisely, the Gompertz-Makeham law states that the force of mortality, π(t), evolves with age, t,
in accordance with the formula π(t) = a +b eαt where a, b and α are parameters. The fit of the Gompertz-
Makeham law, for the population aged 20 and above (children and teenagers are “special”) is very good,
always featuring an R2 in excess of 0.95. See e.g., Arking (2006).
6 Reliability theory is used in engineering to understand the failure rate of mechanical devices. Gavrilov and
Gavrilova (1991) were the first to introduce reliability theory into biology.

5



organism is ultimately constructed from non-aging components, as noted above. Next, as-

sume that the blocks are connected in parallel, and that the system as a whole is assumed to

survive as long as there is one functioning block remaining. This assumption is motivated by

the physiological fact that the human organism is characterized by a great deal of redundancy;

as young adults the functional capacity of our organs is estimated to be tenfold higher than

needed for mere survival (Fries, 1980). Though each block does not age the passing of time

will reduce redundancy in the system as a whole, which leads to an increasing failure rate

of the system. Hence, the simple model successfully reproduces a rising death rate with age.

Many extensions of this basic model have been developed, which have lead to new insights

into the aging process.7 But for present purposes the key point of reliability theory is conveyed

by the simple model: senescence can be conceptualized as the gradual loss of redundancy,

ultimately leading to organism collapse.

Following the underlying reasoning of reliability theory one may therefore think of aging as

being characterized by increasing frailty. That is, as the redundancy of the human organism

shrinks we become more fragile. An empirical measure of human frailty has been developed

by Mitnitski and Rockwood and various coauthors in a series of articles (e.g., Mitnitski et al,

2002a,b; 2005; Rockwood and Mitnitski, 2006).

As humans age they develop an increasing number of disorders, which Mitnitski et al.

(2002a) refer to as “deficits”. Some of these deficits may be viewed as rather mild nuisances

(e.g., reduced vision) while others are more serious in nature (e.g., strokes). Nevertheless, the

notion is that when the number of deficits rises the body becomes more frail. A frailty index

can then be estimated as the proportion of the total potential deficits that an individual has,

at a given age.8

7 For example, if one extends the framework we have just sketched by assuming that the body consists of a
number of essential blocks (so that if one fails the organism fails), each of which consists of non-aging elements
of which some initially are defect, the model reproduces the Gompertz-Makeham law; see e.g., Gavrilov and
Gavrilova (1991).
8 Some methodological notes. To be in the index the deficit must have been demonstrated to be a group and
individual indicator of health, and an important correlate of survival (Mitnitski et al., 2002a). “The total
number of potential deficits” are in practise determined by the survey at hand. This may seem arbitrary.
But according to Rockwood and Mitnitski (2007) the exact choice of deficits is usually not crucial. Provided
sufficiently many indicators (40 or more) are present in the index, results tend to be relatively unaffected.
Note that the construction of the index does not preclude that its value declines on occasion.
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Mitnitski et al. (2002a) show that the following equation fits data on the proportion of

deficits, D (t), of the representative individual at age t very well.

D (t) = E +Beµt.

The parameter µ is considered to be a physiological parameter. In the remaining we will refer

to it as the force of aging, as it drives the inherent and inevitable process of human aging.

The “law of increasing frailty” explains around 95% of the variation in the data, and its

parameters are estimated with great precision. The parameter E turns out to be common for

men and women; using a data set encompassing 66,589 Canadians, aged 15 to 79, Mitnitski

et al. (2002a) estimate E to 0.02, with a standard error of 0.001. The parameters B and µ are

gender specific. For Canadian men (women) log (B) is −5.77± 0.06 (−4.63±0.06), while µ is

0.043± 0.001 (0.031 ± 0.001). Interestingly, Rockwood and Mitnitski (2007) show that that

elderly community-dwelling people in Australia, Sweden, and the U.S. accumulate deficits

in an exponential way very similar to Canadians (an estimate of precisely the Gompertz-

Makeham form of deficit accumulation is unfortunately unavailable for these countries). This

means that in these four developed countries (in spite of differences in samples, the precise

contents of the frailty index etc.) the average individual accumulates 3-4% more deficits from

one birthday to the next.

We can restate the law of increasing frailty in flow form by differentiating with respect to

age:

Ḋ (t) = µ (D (t)− E) , (1)

where E works to slow down the speed of deficit accumulation. In order to see that the

influence of E in (1) is consistent with Mitnitski and Rockwood’s equation for the stock of

deficits, integrate (1) and insert the initial condition D(0) = D0 to get the solution D(t) =

(D0 − E) eµt + E = D0e
µt − E(eµt − 1). Since eµt > 1 for all t > 0, a larger autonomous

component E implies less deficits for any given age t. Note also that the compound parameter

(D0 − E) corresponds to Mitnitski et al.’s estimate of B. In the natural science literature

the parameter E is interpreted as capturing the impact of non-biological factors on deficit
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accumulation (Mitnitski et al., 2002a). Accordingly, we will assume that E is amendable to

change by way of deliberate investment. This is the way in which the individual may attempt

to slow down aging in the model below.9

Specifically, we propose the following parsimonious refinement of the process of deficit

accumulation:

Ḋ(t) = µ (D(t)− a− Ah(t)γ) , (2)

where D(0) is given. The parameter a captures environmental influence on aging beyond the

control of the individual (less pollution, say, implying a higher value for a), the parameters

A > 0 and 0 < γ < 1 reflect the state of the health technology, and h is health investment.

While A refers to the general power of health expenditure in maintenance and repair of the

human body, the parameter γ specifies the degree of decreasing returns of health expenditure.

The larger γ the larger the relative productivity of cost-intensive high-technology medicine in

maintaining and repairing highly deteriorated human bodies.10

By way of contrast to E, the force of aging µ – impressed by its empirical constancy across

developed countries – is treated as invariant to health expenditure. In a science-fiction version

of the model we could perhaps also address how health expenditure, for example through

epigenetic regulation or hormone replacement therapy, affects µ. In retrospect, however, there

is very little evidence so far that “standard” medical treatments have substantially modified

the rate at which our bodies decay (Gavrilov and Gavrilova, 1991). Standard treatments

like, for example a bypass operation or a liver transplant, are effectively delaying death (by

removing one or several health deficits) but they are not manipulating the intrinsic rate

9 Harttgen et al. (2013) find a strong inverse association between health deficit accumulation and income
within European countries as well as within developing countries, suggestive of a positive impact of health
spending (broadly defined) on the speed of aging.
10 If individuals’ investment in health influences E, as we suggest, then one may wonder whether the ”frailty
law” should still work empirically, as E then is expected to exhibit individual-level variation. It should; but
the cross-section estimate for E should be interpreted as the average level in the sample in question (see
Zellner, 1969). The assumption that γ < 1 is not only plausible but also necessary in order to arrive at an
interior solution for lifespan. If the function would be linear or convex, the individual would have the option
to life forever and go for it.
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of deficit accumulation. Here we confine the analysis to standard treatments, which are

appropriately captured in E(t).11

In order to capture death, we need to invoke an upper boundary to deficit accumulation,

D̄. In the analysis below the representative member of a cohort remains alive as long as

D (t) < D̄. Direct evidence on the existence of an upper boundary for D is found in Rockwood

and Mitnitski (2006). Observe that equation (2), along with the restriction that D(t) < D̄,

provides a complete description of aging until death. In this process, chronological age does

not play a role in itself. While the model developed below concerns optimal aging and death

of a representative agent of a cohort, it is nevertheless worth noting that this formulation is

in concordance with a central point made by biologists and gerontologists: individual aging is

not time-dependent. This follows since ˙D(t), by (2), is only influenced by current investments

and accumulated deficits; t (chronological age) plays no independent role.

This completes the development of the central equation which governs aging. But before

we turn to the analysis of optimal aging and death, we briefly compare our law of motion

for deficits with the familiar law of motion from health, which dates back to the work of

Grossman (1972).

2.2. Deficit Accumulation vs. Health Accumulation. Usually, health is introduced as a

state variable similar to human capital. In its most basic form, this would involve an equation

such as Ḣ(t) = I(t)−δH(t), where I(t) is investment in health and H(t) is the stock of health

capital (see e.g. Ehrlich and Chuma, 1990).

If this equation is employed as a description of the aging process it contains a rather

unfortunate implication: It predicts that health depreciation is greater when the stock of

health is large, which, of course, usually would mean when individuals are relatively young.

In reality, the process of aging is a process where the rate of decline in health status accelerates

during life; as explained above, both health deficits and the mortality rate rises exponentially

11 The constancy of µ over time does not necessarily preclude that it could differ between genetically distinct
populations. Galor and Moav (2007) propose a theory of how evolutionary forces might have helped shape
comparative differences in life expectancy across the world through natural selection. If true, this would
support cross country variations in µ. The Galor-Moav theory has recently received independent support in
evolutionary biology: Barnes et al. (2011) find that populations with a longer urban history have obtained
greater genetic resistance towards infectious diseases like tuberculosis.
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with age, implying slow aging early in life and rapid deterioration in latter stages. In practise,

therefore, health losses are greater in states where the health index is low, which usually means

when one reaches a more advanced age.12

Naturally, this problem has not gone unnoticed. Since the work of Grossman (1972), the

standard “fix” has been to introduce an age-dependent rate of health depreciation, δ(t), with

δ̇(t) > 0. While the rate of change in the rate of depreciation may seem intuitively appealing

the question remains how exactly the function is to be specified. Insofar as one does not

get this choice right the resulting model will represent an inaccurate description of the aging

process, and, by extension, its predictive power will be diminished.13

Our approach, by way of contrast, employs a physiological foundation for health deprecia-

tion. In order to see this advantage clearly we convert the equation for deficit accumulation

into one for health accumulation by assuming that actual health is defined as best attainable

health minus accumulated frailties: H = H̄ −D where H̄ is “maximum health”; the state of

health of a normal 15 year old, say. This implies Ḣ = −Ḋ. Inserting equation (1) into Ḣ and

substituting D for H̄ −H provides Ḣ = −µ
(
H̄ −H − E

)
, or,

Ḣ(t) = µE − µ(H̄ −H(t)). (3)

Following the approach above, we may associate E with investments. Finally, using the

terminology of Grossman (1972) and Ehrlich and Chuma (1990) we may define the minimum

level of health below which life is infeasible as Hmin ≡ H̄ − D̄, where D̄ is maximum deficits.

We are thus left with a simple linear differential equation for health, which differs in one

crucial respect from the one adopted in the economics literature: Consistent with the facts,

the equation predicts that health loss is small at a good state of health and increasing losses

12 Of course, in other applications beyond aging the law of motion may be perfectly reasonable. As a macro
representation, for instance, the depreciation term may reflect lost health capital from diseased individuals.
Our critique of the equation is confined to its relevance in the context of modeling the aging process.
13 Making δ(t) an explicit function of time also implies that chronological age is supposed to matter to aging
per se. This is a problematic assumption from a biological perspective, as explained above. This position of
biologists is supported by work of health economists. For example, Zweifel et al. (1999) demonstrate that
among the elderly health expenditure is not predicted by chronological age once “time remaining until death”
is controlled for. This suggest that health status (e.g., frailty), and not the year on the birth certificate, is
what matters to health investments.
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are predicted when the health stock deteriorates. Hence, a meaningful description of how

health deteriorates with age (as the health index erodes) is implicit in our frailty equation.

Notice that according to equation (3) an improvement in health status works to slow down

aging; i.e., it stimulates health accumulation.

The advantage of our modeling approach is that various parameters have clear empirical

counterparts. This is also the case for the frailty index itself, which has already been de-

veloped and tested in the natural sciences. These aspects are very useful in the context of

calibration and will be valuable when the model is taken to the data and tested for its eco-

nomic implications. Obviously, in empirical studies it is commonplace to fit some nonlinear

function δ(t) to capture health depreciation. We do not deny that this is possible, and in

specific applications very useful. But for present purposes it is an undeniable advantage that

the mechanism of health deficit accumulation, the force of aging µ, is pinned down by an

invariant parameter, which is explained by gerontological theory and estimated from actual

data with great precision. This makes us confident that the model cannot only be calibrated

to some particular sample, but that it can also be used for out-of-sample predictions. That

is, for an attempt to explain the position and slope of the Preston curve.

3. A Theory of Optimal Aging and Death

3.1. The optimization problem. Consider an adult maximizing utility from consumption

c(t) over his or her life. For simplicity we follow the related literature and solve a deterministic

problem. It is shown in Strulik (2011) that the main results do not change in a more realistic

but analytically less easily accessible stochastic model. The initial age is for convenience

normalized to zero. Longevity T is finite and endogenous. Let ρ ≥ 0 denote the rate of

pure time preference; the rate of time preference need not be strictly positive in order for the

problem to be well-defined. Summarizing, intertemporal utility is given by∫ T

0

e−ρtu(c(t)) dt (4)
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with u(c) = (c1−σ − 1)/(1 − σ) + b for σ 6= 1 and u(c) = log(c) + b for σ = 1. The case

of σ > 1 might lead to perverse results. If, additionally, consumption is below unity such

that c1−σ > 1, flow utility u(t) becomes negative and the individual may prefer a shorter life.

In order to exclude this degenerate case we introduce, inspired by Hall and Jones (2007), a

constant b ≥ 0 which is assumed to be large enough to guarantee positive utility. For our

numerical results discussed below, it turns out that c is never below unity which allows us

to assume b = 0. In this case flow utility converges smoothly to log(c) for σ → 1. In the

calibration, moreover, it turns out that b = 0 generates the best fit for the value of life.

It is perhaps tempting to allow frailty to enter the per period utility function as well. Nev-

ertheless, as will become clear, the simple model matches the cross-country income gradient

remarkably well. In only allowing health investments to affect utility via longevity, our ap-

proach is similar to that of Becker (2007). At the same time, the present framework can be

extended to allow utility from state of health without substantive implications for the results

(Strulik, 2012).

The individual receives a wage income w. We assume the wage rate is constant during life;

a simplifying assumption which serves to highlight the central workings of the model. Income

can be spend on consumption goods c or on health goods h. The relative price of health

goods is p. While consumption goods are directly utility enhancing, health goods (e.g. a hip

replacement, a weekend at the spa) are instrumental in repairing or delaying bodily decay

and, ultimately, in prolonging the period during which consumption goods can be enjoyed.

Accordingly, the only value of “good health” in this model is via its impact on longevity.

At first sight it may not be obvious that a hip replacement delays death. Bypass surgery or

organ transplants are probably more immediately intuitive examples for life-extending health

expenditure. But gerontological theory as well as analysis of the frailty index suggest that

health deficit accumulation is Markovian: the probability to get yet another health deficit

next period depends positively on the number of already accumulated deficits (Mitnitski et

al., 2006). Together with the evidence for the phenomenon that death can be expected at a
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given value of the frailty index, it is clear that any untreated health deficit is conducive to

bodily decay and death.

Besides spending income on final goods, the individual may save or borrow at a net interest

rate r. The individual takes all prices as exogenously given. The law of motion for individual

wealth k is thus given by (5).

k̇(t) = w + rk(t)− c(t)− ph(t). (5)

The individual is assumed to inherit wealth k(0) = k0, and to leave a bequest k(T ) = k̄

(which both could be zero).

The problem is to maximize (4) subject to the accumulation equations (2) and (5), the

initial conditions D(0) = D0, k(0) = k0, and the terminal conditions k(T ) = k̄, D(T ) = D̄.

The problem can be solved by employing optimal control theory; the state variables are k(t)

and D(t) and the control variables are consumption c(t) and health investments h(t). From

now on time indices are suppressed in the interest of brevity. Details of the derivation of the

following results can be found in Appendix A. The solution of the optimal control problem

provides “optimal aging and death” of the individual that is the (constrained) optimal age at

death (T ) and the (constrained) optimal lifetime trajectory of health deficits.14

3.2. Optimal Aging. From the first order conditions we obtain the Euler equations:

gc ≡
ċ

c
=
r − ρ
σ

(6)

gh ≡
ḣ

h
=
r − µ
1− γ

. (7)

While equation (6) is the standard Consumption Euler equation, equation (7) provides a

novel Euler equation for health expenditures: the “Health Euler equation”. As in the context

of non-health expenditure a higher intertemporal marginal rate of transformation (i.e., a

higher real rate of interest) calls for growing health expenditures across the life cycle. At the

14 By “optimal” we mean from the individual point of view. The developed life cycle model is not appropriate
for a discussion of socially optimal aging and death, which might prompt policy intervention in the form of
redistribution etc. An analysis of social optimal aging and death will require a general equilibrium framework,
which is left for future research.
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same time, growth in health expenditures is tempered by the force of aging, µ. The intuition

is that if µ is high, deficits will accumulate very fast at the end of life, making late-in-life

health investments a relatively ineffective way of prolonging life. Instead, the optimal strategy

is to invest more heavily early in life. Conversely, if the force of aging is low (i.e., µ is “small”)

late-in-life health expenses are more effective in prolonging life, for which reason it can be

optimal to increase h with increasing age. Finally, lifetime growth of health expenditure

is also influenced by γ, which captures the curvature of the health investment function: a

larger γ increases growth in health expenditures, ceteris paribus. Intuitively, if γ is “small”,

diminishing returns set in rapidly, which makes it optimal to smooth health expenditure to

make the deficit-reducing effect as large as possible. Thus, in this setting where health does

not enter the per period utility function it is the state of technology that determines the

extent of expenditure smoothing across life.

It is interesting to note that it is not necessarily optimal to plan for increasing health

expenditures during life. In societies where the force of mortality is sufficiently strong it

may be the optimal strategy to prioritize early-in-life health spending, and thus allow health

spending to decline with age. One way to think about this result is to associate early-in-

life investments in health with “preventive measures” and late-in-life health expenses with

“treatment measures”. If so, then the Health Euler simply says that in societies where

individuals are aging at a rapid pace (r < µ) it is optimal to focus resources on prevention,

rather than on treatment.15

Even if it is optimal to allow health expenditure to rise with age, the expenditure share

for health, εh ≡ h/(h + c), may nevertheless fall, if pure consumption is growing sufficiently

rapidly. Hence, the expenditure share for health is increasing with age if gh > gc, or (using

(6) and (7)) if

r − 1− γ
σ
· (r − ρ) > µ, (8)

15 Note that falling individual health expenditure could be consistent with rising health expenditure at the
aggregate level. In particular, in a growing economy, we would expect aggregate health expenditure to rise
given that younger cohorts are facing higher lifetime income.
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If the ratio 1−γ
σ

increases it becomes less likely that the condition is met. The interpretation is

that a small σ leaves little incentive to smooth consumption, which implies (ceteris paribus)

faster growth in consumption. Meanwhile, γ parameterizes the incentive to smooth health

investments; the smaller γ is the greater the incentive to smooth health investments. Conse-

quently, when 1−γ
σ

increases it implies a greater desire to smooth health investments relative

to consumption, which suggests a declining share of health during the life cycle as long as

r > ρ.

A higher rate of interest will increase the rate of growth of both health investments and

consumption. But whether a higher r makes it more likely that the condition is fulfilled

depends on the incentive to smooth consumption and health investments, respectively. If

consumers have a greater desire to smooth health investments (1−γ
σ

> 1) a higher r reduces

the health expenditure share.

This leaves the impact of ρ and µ. The growth of health spending is independent of

the time preference rate because a change of ρ equally affects the costs (through shadow

price of consumption) and benefits (through shadow price of health deficits) of a temporal

reallocation of health deficits, see the Appendix for details. This means that the slope of the

health expenditure trajectory is independent from the time preference rate. But a higher ρ,

as usual, works to slow down consumption growth. Hence, it becomes more likely that the

health share is rising if individuals are highly impatient. At the same time, in the presence of

a greater force of aging people will act more impatiently vis-a-vis health investments, inducing

them to invest early in life. If the force of aging is sufficiently strong, the expenditure share

for health will therefore be declining over the life cycle.

The bottom line is that the life cycle path for the health share is ambiguous. In particular,

it is not a given that the expenditure share should be rising with age. In theory one may

therefore expect different lifetime trajectories of the health share across countries depending

on culture, technology and physiology.
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3.3. Optimal Death. In contrast to the pioneering contributions on the topic of optimal

health investments (Grossman, 1972; Ehrlich and Chuma, 1990), the present model is suffi-

ciently simple to allow for an explicit solution of the involved differential equations, from which

we can then infer optimal longevity T . In order to see this, first note that the boundary value

problem with variable terminal value T requires that the boundary conditions D(0) = D0,

k(0) = k0, k(T ) = k̄, D(T ) = D̄ and h(T ) = 0 are fulfilled. Then integrate (5) in order

to solve for k(T ) and integrate (2) in order to solve for D(T ). Finally solve the associated

Hamiltonian for H(T ) = 0. This provides the following set of equations (see Appendix A for

details):

D̄ = D0 exp(µT )− µAh(0)γ exp(µT )

gD
[exp(gDT )− 1]− a [exp(µT )− 1] , (9a)

k̄ exp(−rT ) = k0 −
w

r
[exp((r)T )− 1]− c(0)

gc − r
[exp((gc − r)T )− 1]− ph(0)

gD
[exp(gDT )− 1]

(9b)

0 = uT −
exp(−σgcT )

c(0)σ
× (9c){

(D̄ − a)

γA
ph(0)1−γ exp((1− γ)ghT )− 1− γ

γ
ph(0) exp(ghT )− w − rk̄ + c(0) exp(gcT )

}
where gD ≡ (γr − µ)/(1− γ) and uT ≡ log(c(0)) + gcT + b in the case of log-utility and

uT ≡ [c(0) exp(gcT )−1]1−σ/(1−σ)+b otherwise. These three equations can be solved for the

three unknowns: c(0), h(0), and T . Having found the optimal initial values and the optimal

terminal time, the four-dimensional dynamic system (2) and (5) – (7) is fully specified and it

can be solved for the optimal life-cycle trajectories of c, h, k and D.

4. Comparative Dynamics

4.1. Calibration and Model Predictions for the U.S.. Before we turn to the experi-

ments, we calibrate the model to U.S. data, though we have to rely on data from Canada
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when it comes to pinning down the force of aging. Accordingly, we take from Mitnitski et al.

(2002a) the estimate of µ = 0.043 for Canadian men.16

In order to calibrate γ we turn to data on growth in health expenditures over the life

cycle. The model predicts that countries that are technologically similar, and are inhabited

by genetically similar populations should exhibit similar investment patterns across the life

cycle. Is there any evidence to support this prediction? Following, for example, Hall and Jones

(2007) and Fonseca et al. (2009), we may try to gauge life-cycle developments by examining

per capita spending on health across age groups. Figure 1 illustrates such data for four

“Western Offshoots”: Australia, Canada, New Zealand and United States.

The immediately visually arresting theme is that the four trajectories appear to be more

or less parallel, suggesting similar per capita spending growth. Indeed, if one calculates the

slope of the trend, the average annual growth rates across the life cycle are nearly identical:

2.0% (Australia), 2.1% (Canada), 1.9% (New Zealand) and 2.0 % (U.S.). Hence, while the

four countries differ in terms of the level of health spending per capita, the rise in health

spending per capita across life is nevertheless strikingly similar.These patterns are consistent

with the predictions of the health Euler derived above when the countries share approximately

the same real interest rate and the same force of aging but differ in income, efficiency of the

health care system (A) and relative prices.17

Next we turn to the health Euler (7) in order to calibrate the curvature of the health

production function, i.e. γ. We put r = 0.06 (e.g., Barro et al., 1995) and using data from

Figure 1 we put gh = 0.021, to capture the growth of health spending across the life cycle in

16 As explained in Section 2: the force of aging within the U.S. and Canada are similar (Rockwood and
Mitnitski, 2007). Thus, using the estimate from the Canadian sample should be a good approximation.
While Rockwood and Mitnitski (2007) stress the similarity of their results for U.S. and Canadian populations
they do not report the detailed results for their U.S. analysis, for which reason we are forced to rely on the
results from the Canadian sample.
17 That the countries otherwise seem to behave differently in the context of health is nicely illustrated by
their aggregate health shares. In 2006 the share of total health spending in GDP was 8.7% in Australia, 10.0%
in Canada, 9.4% in New Zealand and 15.3 % in the U.S. Notice that the observation of an approximately
constant growth of health expenditure across ages in a particular period of observation (around the year 2000
in our case) is compatible with the fact that life cycle health expenditure changed over time (as observed for
the U.S. by Meara et al., 2004). In our theory this would be attributable to changes in one or more of the
key parameters; r, ρ or γ.

17



Figure 1: Health expenditures per capita across age groups: Selected countries 1999-2001
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The figure shows log health expenditures per capita by age-group in Australia,
Canada, New Zealand and the U.S. Sources: U.S. from Keehan, Lazenby, Zezza,
and Catlin (2004); Canada from Health Canada (2001); Australia from Aus-
tralian Institute of Health and Welfare (2004); for New Zealand from New
Zealand Ministry of Health (2004). Notes: (i) In order to consolidate the age
intervals for the purpose of illustration simple averages across age intervals and
gender have been invoked. (ii) For the U.S. the first age group concerns individ-
uals aged 19-44. (iii) The year of data collection varies slightly, as indicated by
the legend to the figure: The data for the U.S. is from 1999; data for Australia
and Canada is from 2000 and data for New Zealand concerns 2001.

Canada from which we obtained the value for µ. This produces γ = 1 − (r − µ)/gh = 0.19,

which squares well with the independent estimates obtained by Hall and Jones (2007).18

Mitnitski et al.’s regressions do not involve children. Much like the Gompertz-Makeham

law for mortality, individuals below roughly the age of 20 are presumably not well described

by the law of frailty (in stark contrast to the group above 20). Hence, when calibrating the

model we assume individuals are “born” at the age of 20.

18 Hall and Jones allow the curvature of the health production function to be age dependent. The average
value is close to 0.2. Our main results are robust against variation of the interest rate. The estimated income
elasticity of life expectancy stays between 9 and 10 percent when the interest rate varies between 4 and 8
percent.
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With this in mind we do the following in order to parameterize the deficit accumulation

equation. From Mitnitski et al.’s (2002a) regression analysis we can back out D(0) = 0.0274 as

the relevant initial value for a 20 year old and D̄ = 0.1005 55.2 years later; the life-expectancy

of a 20 year old U.S. American in the year 2000 was 55.2 years (NVSS, 2012). In order to

identify a, we assume that before 1900 the role of technology in the repair of health deficits

of adults was virtually zero. In 1900 the life expectancy of a 20 year old U.S. American was

42 years (NVSS, 1980). From countries for which extended historical time series are available

we know that life expectancy for adults was about the same in the 18th, 19th, and early 20th

century (See England and Sweden at www.mortality.org). Setting A = 0 and thus shutting

down the health investment channel, we obtain a = 0.013 such that the model predicts a

life-expectancy at age 20 of 42 years.

Since consumption tends to be essentially constant across the life cycle, once family size

has been taken into account (Browning and Ejrnæs, 2009), we put ρ = r. The most natural

specification of the intertemporal elasticity of substitution is probably unity. So we set utility

to be logarithmic for the benchmark case.19 In order to focus on health expenditure as a

motive for savings we assume k(0) = k(T ) = 0 for the baseline simulation. Hall and Jones

(2007) emphasize that the presence of autonomous utility b > 0 is essential in their theory

to produce the result that the health expenditure share is increasing with age. By way

of contrast, the present theory does not rely on b > 0, the model predicts an empirically

plausible association of health expenditure and age, through a different, novel channel: the

law of increasing frailty. To emphasize this point we set b = 0 in our benchmark calibration.

Moreover, the case of b = 0 provides the best fit of the model to independent estimates of the

value of life, as detailed below.

Finally, in order to identify the role of health technology in preventing death, we take GDP

per worker in the U.S. in the year 2000 (PPP$ 77,003) and assume a capital share of 1/3,

which implies an annual labor income (in international dollars) of $ 51,335. We normalize the

19 Log utility is the most frequent assumption about the curvature of the utility function in economics.
Empirically there are studies suggesting higher as well as lower values for σ. A value of unity is a thus a
compromise, supported by Chetty (2006), who shows that the elasticity of substitution consistent with 33
studies of the labor supply elasticity has to be close to unity.
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relative price of health in the year 2000 to unity, and estimate A such that the individual dies

with deficits D̄ at age 75.2, according to the life-expectancy of a 20 year-old U.S. American

male in the year 2000 (NVSS, 2012). This provides the estimate A = 0.00139. Note that

this identification leaves room for a very broad interpretation of health promoting technology.

It does not only include advancements in medical science but also advancements in general

knowledge about nutrition and hygiene, i.e. all knowledge that makes health expenditure more

effective. Table A.1 in the Appendix summarizes the calibration of the model.

In sum, the model is calibrated to match initial deficits, end-of-life deficits, and longevity in

2000; D(0), D̄ and T , respectively. It also matches the growth of health spending across age

groups exactly. Yet the path of deficits (between age 20 and death), as well as the evolution of

expenditure shares across the life cycle, are left unrestricted. This provides the opportunity

for an informative consistency check of our approach: does the path of the health expenditure

share and cohort frailty match the data?

Figure 2 shows the basic run of the model; including the association between model pre-

dictions and actual data. In the lower right panel of Figure 2 stars indicate actual health

expenditure shares by age-group inferred from Mazzocco and Szemely (2010), which can be

compared to the solid line representing the prediction from the calibrated model. Admittedly,

our calibration predicts a too flat slope of the age trajectory for the health expenditure share.

We conjecture this failure is mainly caused by the fact that our model does not allow wages

to decline with age. Nevertheless, the model does well on average.

The upper left panel shows the accumulation of deficits for the average U.S. (male) citizen.

The dotted line reflects the scenario where there are no health investments occurring; the

solid line involves optimal health investments as predicted by the model. In the figure we also

illustrate the law of frailty, as estimated by Mitnitski et al. (2002a), represented by stars. As

can be seen, the model’s fit is rather good in that the path of deficits is fairly close to the one

found in the data.

As another check, we employ the model to calculate the value of life (VOL) of a U.S. citizen

at different age intervals, so as to compare the present framework’s predictions with previous
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Figure 2: Optimal Aging: Basic Run
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Solid lines: basic run. T = 55.6. Parameters: a = 0.013, A = 0.0014, µ = 0.043,
ρ = r = 0.06, D0 = 0.0274, D̄ = 0.10, p = 1. Dashed line: no health expenditure
(A = 0) stars: data, s denotes the savings rate, s ≡ 1 − (c + ph)/(w + rk), and εh
denotes the health expenditure share, εh ≡ ph/(c+ ph).

estimates. The VOL provides a monetary expression of aggregate utility experienced during

life until its end, that is period utility is converted by the unit value of an “util”, u′(c).

Applying the formula Ṽ (t) =
∫ T
t

e−ρ(τ−t)u(c(τ)dτ)/u′(c(t)) we obtain the VOL at age t. Our

benchmark calibration predicts a VOL of about $ 8 million for a 25 year-old, and $ 2 million

for a 70 year-old. In order of magnitude these values correspond well to Murphy and Topel’s

(2006, Fig. 3) estimates for the value of remaining life of $ 7 million at 25 and $ 2 million at

70. At ages above 70 our model predicts a too steep decline of VOL with age, an artefact from

VOL having to be zero when our Reference American expires. Murphy and Topel consider an

(asymptotic) end of life at age 110, which, naturally allows for a flatter curve of the VOL per

age. Observe that our estimates for VOL are obtained under the assumption b = 0. Clearly,

there are no alternative values of b ≥ 0 that will allow us to match existing VOL estimates
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better. A positive b would lead to a too high value of VOL at young age and an even steeper

decline afterwards. This suggests b = 0 is a sensible benchmark.20

Finally, the model also holds predictions about the path of the savings rate (s) and wealth

across the life cycle. Contingent on the imposed parameter values health expenditures are

rising during life, as we just saw, which requires early-in-life savings so as to finance late-in-life

investments. Individual wealth therefore follows a “hump shaped” trajectory; as seen from

the upper right hand side window, supported by positive savings early in life and dissaving

late in life (lower left hand side window). These patterns are qualitatively consistent with

the standard life cycle theory of consumption. We have not examined whether the model

matches wealth and savings quantitatively, as it seems unlikely that we can predict wealth

during working years without a careful discussion bequests and inheritances.21

Figure 3: Health and Wealth over the Life Cycle

A: Variation of Labor Income B: Variation of Wealth
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Green (dashed): wage income increases by 33 per-
cent. ∆T = 1.48, implied elasticity 0.080). Red
(dotted): wage income decreases by 33 percent
(∆T = −1.79, implied elasticity -0.097).

Green (dashed lines): k(0) = w, k̄ = 0 (∆T =
0.27). Red (dotted): k(0) = w and k̄ = w (∆T =
0.28).

4.2. Experiment 1: Income. Panel A of Figure 3 shows how the agent reacts if his income,

w, is perturbed. The green (dashed) line is associated with an increase in w by 33%, the red

(dashed-dotted) line depicts the reaction to a reduction of w by 33% (in all the experiments

20 In the Appendix we nevertheless discuss an alternative specification with positive b (with and without
adjustments for σ).
21 The relative importance of life cycle motive vs. the bequest motives for saving is still in debate (e.g.,
Dynan et al., 2002).
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“green” is associated with increases, and “red” with reductions in the parameter of interest).

As can be seen from the figure, the consequence of higher income is an increase in longevity,

peak wealth and the share of health spending. In regard to the latter, note that we are keeping

r, ρ, µ, γ constant. Hence the increase in the health share solely reflects a “level effect” through

h(0)/c(0). The intuition for why income changes entail a larger change in health spending than

regular consumption is that the incentive to smooth the latter is stronger due to diminishing

- per period - marginal utility. Higher income therefore leads to a larger adjustment in h(0)

than c(0).22

The issue of main interest, however, is the quantitative impact on longevity. As seen from

panel A, the impact is modest though not inconsequential. An increase of income by 33%

(achievable in a generation with a growth rate of about 1% per year) through the associated

increase in health spending translates into an increase in longevity of 1.5 years; the reduction

of income by 33% involves a fall in life span of 1.8 years. If we convert the impact into an

elasticity - the elasticity of longevity with respect to income - we find it to be around 0.09.

These effects are not outlandish in comparison to econometric estimates.23

4.3. Experiment 2: Wealth and Bequests. In the baseline model we did not allow for

wealth transfers. Hence, an interesting question is how longevity changes if the individual

receives an inheritance, and is forced to pass on a bequest. The dashed line in Figure 3, panel

B, examines the impact from offering the individual a transfer comparable to her annual wage,

while she is not obliged to pass on any bequest. The dotted line then examines the effect

from forcing the individual to pass on a bequest equal to the initial transfer.

When agents receive an inheritance they are naturally able to invest more in health than

otherwise, as it increases their lifetime income. It is interesting to observe, however, that

what really matters is the initial inheritance; if bequests are passed on the simulated increase

in longevity is about a quarter of a year (0.27 years), whereas the increase is only marginally

22 For our benchmark calibration the income elasticity of c(0) is 0.97 and the income elasticity of h(0) is 1.28
(obtained from a 33% increase of income).
23 See, for example, Pritchett and Summers, 1996. Since the dynamic system is non-linear, the results from
our experiments are not symmetrical. As a robustness check we redid the calibration using income per capita
instead of income per worker. The estimated income elasticity is 0.081 (instead of 0.080) when income is
increased by 33% and 0.097 (as in the benchmark case) when income is reduced by 33%.
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higher without the bequest requirement. Why is the bequest requirement so relatively incon-

sequential? The intuition is that what dominates over a lifetime is the accumulated interest

on the initial bequest. A 6% annual interest will double the value of the initial inheritance

almost every decade. In this light it is perhaps unsurprising that the paying of a one year’s

wage in bequest has a relatively minor impact on the results.24

4.4. Experiment 3: Health costs. Our next experiment concerns health costs; the relative

price of h. Here we consider a doubling of the relative price of health goods. Rising relative

health prices is a realistic scenario; the CPI of medical care has risen faster than the GDP

deflator in the U.S. (Cutler et al., 1998).25

As is clear from Panel A of Figure 5, when the relative price of health increases, individuals

substitute towards regular consumption. As a result, the health share declines. With less

health investments, savings decline as well. The end result of a doubling of the relative price

is a reduction of longevity by 2.7 years. This amounts to a longevity-price elasticity of 0.09.

Figure 5: Health and Wealth over the Life Cycle

A: Variation of Health Costs B: Variation of General Medical Effectiveness (A)
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Green (dashed): doubling p, ∆T = −2.7, implied
elasticity -0.09). Red (dotted): halving p (∆T =
3.6, implied elasticity 0.13).

Green (dashed): 33 percent increase of A (∆T =
9.8, implied elasticity 0.53). Red (dotted): 33
percent decrease of A (∆T = −6.4, implied elas-
ticity -0.35).

24 Again, increasing wealth has a disproportionate affect on health expenditure and consumption expenditure.
The inheritance of an annual wage increases c(0) by 6.1 percent and h(0) by =7.1 percent
25 However, according to Cutler et al. (1998), productivity of health care has also risen. Indeed, the authors
argue that relative medical prices, appropriately quality adjusted, might have been declining over time. Below
we examine the influence from changes in health productivity.
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4.5. Experiment 4: Health Technology. In the experiments above, the impact from the

parameter of interest were indirect. For instance, an increase in income translates into both

higher health spending and higher consumption. Medical technologies (or the productivity of

health investments more broadly), however, have a direct impact on the evolution of deficits

and therefore on longevity. A larger impact is therefore to be expected.26

In Figure 5, panel B, we depict the impact of health technologies on longevity. We examine

the impact from increasing A by 33%; an increase of a similar magnitude to that which

we analyzed in Section 4.2, in terms of income. If health productivity rises by 33% the

consequence is an increase in longevity of nearly a decade. The implied elasticity is about

1/2. This is a very large effect, suggesting that the impact from improvements in health

productivity easily may have towered that of rising income.

5. The Preston Curve

In his classic paper Preston (1975) documented that there is a positive and concave cross-

country relationship between GDP per capita and life expectancy at birth. Subsequent re-

search has found that the Preston curve still holds (e.g., Deaton, 2003) and that the relation-

ship between income and longevity seems to have emerged sometime late in the 19th century

(Bloom and Canning, 2001).

While the Preston curve thus continues to hold, questions remain as for its interpretation.

Preston (1975) himself argued that an impact from income on longevity could occur in various

ways, including via diet, access to clean water and sanitation, as well as medical treatment. At

the same time, it is hard to exclude that the same link could be attained with causality running

from life expectancy to income. Or, perhaps income is simply correlated with something else

that matters to longevity, like human capital (Bloom and Canning, 2007).

Our model establishes a causal link between income (in the form of wages) and life ex-

pectancy (in the form of longevity, T ). The mediating factor is health investments, h, which

would include basic investments like access to clean water and sanitation, as well as more

26 In a general equilibrium setting changes in A would instigate changes in p. Hence, it is only in this partial
equilibrium setting that experiment 3 and 4 can be viewed as independent ones.
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sophisticated investments associated with medical treatment. But are these mechanisms suf-

ficient to create the empirical income gradient?

In order to confront this question we begin by estimating the Preston curve for the year

2000. The fitted values from this regression constitute the income gradient to be explained.

Naturally, the results from the regression most likely confounds three separate channels: The

impact of income on longevity; the impact of longevity on income (reverse causality), and

the influence from factors correlated with both income and longevity (omitted variables bias).

Our model, however, allows us to isolate the pure effect of income on longevity through health

expenditure. Hence, as a second step, we feed the income levels of the countries in our sample

through our model, keeping the parameters we calibrated for the U.S. fixed, and record the

implied levels of life expectancy. As a third step we then compare the longevity predictions of

our model to those associated with the observed income gradient; this comparison allows us

to quantify how important the income-to-longevity channel is in accounting for the Preston

curve.27

The prediction of the model should not be expected to coincide with the Preston curve since

it is hard to believe that the income-to-longevity channel is the only channel captured by the

Preston curve. But the deviation between points on the Preston curve and the prediction of

our model will have a sensible interpretation: they reflect either the impact from factors that

shift the Preston curve and are correlated with income, or, they reflect the opposite chain of

causality (i.e., longevity influencing income). In theory, candidate omitted factors that are

correlated with income empirically are captured by the relative price of health goods (p) and

health efficiency (A); both p and A will shift the Preston curve if perturbed.28 Our analysis

27 Naturally the actions of private agents and governments may not be as optimal as our model suggests. In
particular, “myopic” young individuals may discount the future hyperbolically, invest too little in health, and
regret their behavior later. Deviations from optimality, or more broadly from the behavior captured by the
model, will be reflected in deviations between the model and the observed Preston curve, i.e. in the residual.
Moreover, the predicted Preston curve is based on life cycle analysis in partial equilibrium. It ignores general
equilibrium effects and cannot be used to make inferences about redistribution policies.
28 The list of factors that may influence “A” is long but probably includes, among others, technology (if health
technology does not diffuse immediately), health care institutions (how efficient is the health care system in
translating spending into results?), climate (since it influences disease gradients and thereby longevity for
income given) and human capital (if education means that a dollar’s worth of health spending is used more
effectively).
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does not allow us to pin down the source of the deviation between the model’s prediction

and points on the Preston curve (omitted variables vs. reverse causality). But the deviation

between the theoretically predicted Preston Curve and its empirical counterpart does provide

some indication of how important they collectively are in generating the empirically observed

income gradient.

5.1. Estimating the Preston Curve. While the original Preston curve concerns GDP per

capita and life expectancy at birth, we obviously need to modify the “input data” slightly.

Our model does not involve children; life expectancy at birth is therefore not the optimal

empirical counterpart to T . Instead, we collected data on male life expectancy at the age

of 20, to retain consistency with our calibration for the US.29 Unfortunately, life expectancy

at age 20 is not recorded consistently each year in all countries; so our actual data involves

observations circa 2000. Our income measure is only slightly different from the one employed

by Preston (1975) in that we opt for GDP per worker rather than GDP per capita. GDP per

worker is arguably a more appropriate empirical proxy for wages w, the labor income measure

in our model.

The country sample was restricted in two ways (beyond via availability of the basic data):

following Preston (1975) we ignore countries with a population below 2 million citizens, and

in addition we omitted the OPEC countries; GDP per worker is probably a poor guide to

average wages in these countries. This leaves us with a sample of 65 countries in 2000.

With this data in place we proceed by estimating the income gradient semi-parametrically.

That is, we make no a priori functional form assumptions about the income gradient, but

add a linear control for the year of observation for longevity. Specifically, we estimate the

equation yi = f(zi) + xiβ + εi, where the dependent variable is life expectancy at the age of

20, zi is GDP per worker, xi is the observation year for life expectancy which adjusts for the

fact that life expectancy is not measured in exactly the same year, and εi is a noise term. The

function f is assumed to be a smooth, single-valued function with a bounded first derivative,

29 All data sources are found in Appendix C.
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but data decides the exact relation between GDP per worker and life expectancy.30 The result

is depicted in Figure 6.31

Figure 6: The Modified Preston Curve
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The Figure shows the cross-country link between life expectancy at age 20 and
GDP per worker in 2000 (65 countries). Notes: The line is estimated semi-
parametrically, with year of data collection for life expectancy being the linear
control. Labor productivity is significant (p-value of 0.000). See Lokshin (2006)
for details on the estimation algorithm. See Appendix C for data sources.

In comparison to the original Preston curve the estimated function is somewhat more linear

to behold. This result is likely caused in part by the fact that we are ignoring child mortality,

and in part by the fact that data is missing in many of the poorest countries. Nevertheless,

we do see a flattening of the income gradient at high levels of GDP per worker; the income

gradient is non-linear and concave. The estimated income gradient, depicted in Figure 6, is

the target we compare our model’s predictions to.32

30 See Lokshin (2006) for details on the estimation algorithm that we employ.
31 As seen, the estimated curve exhibits a slight “dip” at the top of the income distribution. This result is
carried entirely by the U.S. and its protectorate Puerto Rico. A possible interpretation is that the level of
health care efficiency (A in our model) generally is positively correlated with income, yet somewhat lower in
the U.S. and Puerto Rico compared to that of other wealthy nations.
32 Recent work by Georgiadis et al (2011) shows that growth in longevity and income appears uncorrelated
across the poorest countries in the world from the 1970s onward. A possible interpretation might be the
following. Empirically, it appears that increasing life expectancy is (if anything) detrimental to growth in poor
places (Acemoglu and Johnson, 2007; Cervallati and Sunde, 2011), yet conducive to growth in richer places that
have undergone the demographic transition (Cervallati and Sunde, 2011). If so, and assuming that greater
income stimulates longevity everywhere (as our research suggests) via health investments, the correlation
between growth in longevity and income might be insignificant when solely poor places are examined, yet
significantly positive across richer places (and across rich and poor places taken together).
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5.2. Understanding the Preston Curve. In order to examine the importance of the pure

income channel, i.e. the channel that operates through health expenditure, in accounting

for the Preston curve, we feed the income levels (PPP GDP per worker in 2000) for the 65

countries through the model, keeping the parameters we calibrated to U.S. data fixed. Figure

7 allows for a visual comparison between the model’s predictions regarding life expectancy in

2000, and the empirically estimated income gradient from the cross section in 2000, whereas

Table 1 provides some summary statistics.33

Figure 7: The Model vs. the Preston Curve
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The figure compares the empirically estimated Preston curve (dotted) to the
Preston curve predicted by the model (solid).

Table 1: Summary statistics: Life Expectancy, Model vs. Data

Data Model

min 45.4 46.9
5th pct 46.4 47.5
25th pct 48.3 48.9
50th pct 51.5 50.8
mean 52.4 51.2
75th pct 57.4 53.8
95th pct 57.9 54.8
max 58.0 55.4

33 Note that the empirical Preston curve – in contrast to the predicted Preston curve – does not go through
the U.S. data point (the empirical curve overestimates U.S. health given wealth). Consequently, the two
curves do not intersect at the U.S. data point.
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As can be seen from the figure, the model (solid line) does a pretty good job at matching

the Preston curve (dotted curve). As seen from the table, the model underestimates the

range of life expectancies spanned by the Preston curve somewhat, but at average or median

income the actual income gradient and the one predicted by the model essentially coincide.

The model can account for (54,8-47,5)/(57,9-46,4))=63.5% percent of the increase in life

expectancy according to the Preston curve when going from 5th to 95th percentile in income.

While the simulated Preston curve provides a reasonable fit to its empirical counterpart

there are systematic deviations between the two. There are two complementary explanations

for the systematic nature of the deviations; the first is based on the assumption that “omitted

variable bias” is influencing the empirically estimated income gradient, whereas the second

would pertain to the case where reverse causality is thought to be important.

Consider the latter case first. If reverse causality is an issue one may think of the estimated

income gradient as the outcome from the interaction of two separate underlying schedules:

an income-to-longevity schedule and a longevity-to-income schedule. The former is in theory

captured by our model, which by construction does not admit the reverse line of causality.

Now, if the longevity-to-income schedule has a steeper slope than the income-to-longevity

schedule in the (income, life expectancy) space, then the estimated Preston curve will feature

a slope that is strictly larger than the income-to-longevity schedule. As a result, our model

(capturing only the income-to-longevity mechanism) should overestimate life expectancy at

the bottom of the income distribution and underestimate it at the top.

Alternatively, suppose reverse causality is not an issue. If so, then we would interpret

deviations between the Preston curve and the model’s prediction as the result of omitted

variables; factors that are correlated with both life expectancy and income. Theoretically,

such factors could map into A (efficiency of health investments), p (relative price of health

goods), or both. Our results then suggest that the price level of health in efficiency units

(p/A), is higher in most of the poorest countries relative to U.S. But by the same token p/A

must then be larger in the U.S. compared to many of the richest countries, suggesting that

the U.S. health care system (at least in 2000) was less efficient than that of many other rich
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nations. Whether this is true or not is hard to say. But it remains an observable fact that

the U.S. constitutes an “outlier” in health expenditures, but not in terms of life expectancy.

In any case, if omitted variables is the only channel affecting the Preston curve beyond

the income–to-longevity channel, the observed difference between the Preston curve and the

model’s prediction would have to mean that the price of health in efficiency units is higher

in many of the poorest places, yet lower in the richest places, relative to its level in the U.S.

In practise, of course, we have no way of knowing which of these two “stories” (i.e., reverse

causality or “confounders”) is more important in accounting for the left-over residual.

In sum, the analysis suggests that the Preston curve largely, but not exclusively, is due

to the causal influence form income through health expenditure on longevity. This insight

leads to an important conclusion. To a first approximation, the sad reality seems to be that

poor people spend less on health because they are poor and live shorter lives because of it.

These conclusions mimic Preston’s (1975) own conjecture regarding the underlying forces that

generate his curve rather well. That is, the nonlinear link between income and life expectancy

is to a large extent caused by lower health investments in several dimensions, ranging from

clean water to medical treatment. Changes in relative prices and health technologies do

matter. But in order to understand the income gradient, they do not seem to be the main

culprits.34

6. Concluding Remarks

In the present paper we have proposed a theory of optimal aging and death. Individuals

maximize lifetime utility subject to the usual budget constraint, but also taking their phys-

iology into account. The physiological constraint concerns the gradual emergence of health

deficits that constitute the aging process. While aging and death are inevitable, individuals

can invest in their health which serves to slow down aging and prolongs life. Contingent on

preferred health investments the aging process as well as the time of death are determined.

34 The income elasticity of health spending is about 1.3 according to our calibration and almost constant
within the range of variation of income in our sample. This means that the concave shape of the Preston
curve can be attributed to decreasing returns in health expenditure.
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The model holds strong predictions regarding optimal health spending across the life cycle,

as well as for the optimal evolution of health expenditure shares. Interestingly, it is not

necessarily optimal for health spending, or its expenditure share, to rise during life. The

analysis has worked out under what circumstances it is optimal for spending to be rising,

constant, or declining during life.

The calibrated model is able to predict spending shares and frailty across age groups, in

the U.S., fairly well. Encouraged by these findings we used the calibrated model to elicit

information about the dynamic impact on frailty and longevity from shocks to technology,

income and more. One interesting outcome of the simulations were that changes in relative

health prices and income have relatively modest effects on longevity. By way of contrast,

the impact on longevity from changes in health efficiency is much larger. This suggests

that governments aiming to improve health outcomes might be better off focusing on health

technology and on the institutional set-up of the health sector than focusing on subsidizing

prices on health investments.

In a cross-country setting the calibrated model is able to account well for the celebrated

Preston curve. This suggests that most of the observed link between income and longevity

across countries can be attributed to variations in health investments. The model does not

fully account for the Preston curve; deviations reflect either reverse causality or omitted

factors that are correlated with both income and longevity.

We believe the framework developed above can form the basis for future research in a num-

ber of different ways. From a theoretical angle, it seems natural to extend the framework

above to the case of optimal retirement. In ongoing work we make a foray in this respect

(Dalgaard and Strulik, 2012). We employ the extended model to analyze the driving forces

behind the secular rise in cohort-specific years in retirement; the residual between the en-

dogenously determined age of retirement and age-of-death. We find that wage growth (rather

than improvements in health efficiency) chiefly is responsible for this increase, when it comes

to cohorts born between 1850 and 1940. The model can also fruitfully be used to study the
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aging–human capital nexus. Strulik (2011) augments the above model by optimal school-

ing choice and uses it to get a handle on the “education gradient” in longevity. Even more

ambitiously, it would be highly interesting to integrate the model into a general equilibrium

setting, which would permit a more complete analysis of the intricate links between macroe-

conomic variables and population aging, and allow one to study (e.g.) the consequences of

redistribution policies on the distribution of health and longevity.

From an empirical angle our model offers new predictions regarding life cycle allocations

that can be confronted with cohort data. An interesting question, for instance, would be

whether the theoretically predicted “Health Euler” is consistent with the data. By extension,

it would be interesting to know if individuals facing different interest rates choose different

trajectories for health investments over the life cycle, and whether optimal health spending

generally differs across population groups that have been differentially influenced by evolu-

tionary pressures with regards to longevity, manifesting itself in different “µ’s” (cf. Galor

and Moav, 2007; Barnes et al, 2011). If the latter is the case, our theory provides micro

foundations for the proposition that genetic differences across individuals will have economic

ramifications.
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Appendix A: Derivations

Derivation of (6) and (7). The Hamiltonian associated with the problem of maximizing

(4) subject to (2) and (5) reads

H =
c1−σ − 1

1− σ
+ λµ (D − a− Ahγ) + φ (rk + w − c− ph) .

For σ = 1 the first term is replaced by log(c). The first order conditions wrt. c and h and the

co-state equations are

c−σ − φ = 0 ⇒ c−σ = φ ⇒ σċ/c = −φ̇/φ (A.1)

− λµAγhγ−1 − pφ = 0 (A.2)

λµ = λρ− λ̇ ⇒ µ− ρ = −λ̇/λ (A.3)

φr = φρ− φ̇ ⇒ r − ρ = −φ̇/φ. (A.4)

Equation (A.4) is the well known Euler equation requiring that the shadow price of consump-

tion (φ) grows at the rate of the interest rate less the time preference rate. Analogously, the

Euler equation (A.3) requires that the shadow price of health grows at the rate of health

deterioration (µ) less the time preference rate.

Log-differentiate (A.2) wrt. age t and insert (A.3) and (A.4) to obtain optimal growth of

health expenditure:

λ̇

λ
− φ̇

φ
= (1− γ)

ḣ

h
⇒ − µ+ ρ+ r − ρ = (1− γ)

ḣ

h
.

Observe that ρ cancels out. Intuitively, the growth rate of health expenditure depends posi-

tively on the growth rate of the the shadow price differential, i.e. the growth rate of λ/φ. If

the shadow price of health (λ) grows at higher rate than the shadow price of consumption

(φ), it indicates that the future contribution of health to utility is more important than the

future contribution of consumption (both measured relative to current contribution) and thus

it is optimal that health expenditure increases with age (ḣ/h is positive). Since the time

preference enters both equations symmetrically, it has no significance for the growth of health

expenditure. Of course it will affect the level of health expenditure, see main text. Since r

enters only the growth rate of the shadow price of consumption and µ enters only the growth

rate of the shadow price of health, they do not drop out but affect growth of health expen-

diture with opposite sign. Specifically solving for the growth rate of expenditure we get the

“Health Euler”, i.e. equation (7) of the main text. As usual, (6) is obtained by inserting (A.3)

into (A.1). Note also, from (A.2), that the shadow price of health φ is negative because the

associated stock variable D is a “bad” rather than a good.

Derivation of (9a)-(9c). Begin with noting that, because gh is optimally constant according

to (7), the differential equation (2) can be rewritten as Ḋ = µ(D − a − Ah(0)γ exp(γght)).

34



Given D(0) = D0 the solution at age T is:

D(T ) = D0 exp(µT )− µAh(0)γ exp(µT )

∫ T

0

exp(γgh − µ)dt+ µa exp(µT )

∫ T

0

exp(−µt)dt.

At the time of expiry the boundary condition requires D(T ) = D̄. Solve the integrals in the

above equation to get (9a) in the text. Next, integrate (5) and insert k(0) = k0 and k(T ) = k̄

to obtain

k̄ = k0 exp(rT ) + w exp(rT )

∫ T

0

exp(−rt)dt

− c(0) exp(rT )

∫ T

0

exp[(gc − r)t]dt− ph(0) exp(rT )

∫ T

0

exp[(gh − r)t]dt.

Divide by exp(rT ). Note that gh−r = (γr−µ)/(1−γ) ≡ gD and solve the integrals to obtain

(9b) in the text.

Finally note that optimal expiry requires that the Hamiltonian assumes the value of zero

at T . Otherwise, it would have been optimal to live longer or die earlier. Also, at expiry

D(T ) = D̄ and k(T ) = k̄. Thus the Hamiltonian reads

0 = H(T ) = u(c(T )) + λ(T )µ
[
D̄ − a− Ah(T )γ

]
+ φ(T )

[
rk̄ + w − c(T )− ph(T )

]
.

Insert λ(T ) and φ(T ) from (A.1) and (A.2) to get

0 = u(c(T ))− p

c(T )σ

[
(D̄ − a)h(T )1−γ

γA
− h(T )

γ
− w + rk̄

p
+ c(T ) + h(T )

]
where uT ≡ log c(T ) + b in the case of log-utility and uT ≡ [c(T ) − 1]1−σ/(1 − σ) otherwise.

Noting that c(T ) = c(0) exp(gcT ) and h(T ) = h(0) exp(ghT ) this provides (9c) in the text.

Appendix B: Calibration and Robustness

Table A.1 summarizes the calibration of the model.

Panel A of Figure A.1 compares the benchmark run with the solution when health is a

“superior good”, as in Hall and Jones (2007), reflected by green circled lines showing the

solution for b = 10. The introduction of an autonomous component in utility raises health

expenditure and the slope of the health expenditure curve, as in Hall and Jones. In our case,

this implies that the model predicts too much and too steeply increasing health expenditure.

The counterfactually high demand for health can be controlled for by increasing the in-

tertemporal elasticity of substitution. A higher IRS (lower σ) implies that the individual

has less preference for consumption smoothing than in the log case. Since we maintain the

benchmark assumption r = ρ, i.e. constant level of consumption throughout life, the change

in preferences can only manifest itself in a higher initial level of consumption. This also brings

lower savings, a lower level of health investments and thus less longevity. As Panel B demon-

strates reducing σ to 0.915 exactly counterbalances the “superior good” assumption and the
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Table A.1: Model Calibration and Implications

description notation value source

capital share α 0.33 King and Rebelo (1999)
inverse of IES σ 1.0 Chetty (2006)
luxury good b 0.0 health is not a luxury good
interest rate r 0.06 Barro et al. (1995)
time preference rate ρ 0.06 Browning and Ejrnaes (2009)
GDP per worker in 2000 y 77003 Heston et al. (2009)
life expectancy at 20 in year 2000 T 55.2 National Vital Statistics (2012)
life expectancy at 20 in year 1900 T 42.0 National Vital Statistics (2012)
force of aging µ 0.043 Mitnitski and Rockwood (2002a)
health deficits at age 20 D(0) 0.027 Mitnitski and Rockwood (2002a)
health deficits at age 75.2 D(T ) 0.10 Mitnitski and Rockwood (2002a)
growth rate of health spending gh 0.021 Health Canada (2001)
bequests k(0), k(T ) 0.0 benchmark: no bequests
exogenous health parameter a 0.013 implied
health technology (scale) A 0.0014 implied
health technology (curvature) γ 0.19 implied
relative price of health in 2000 p 1.0 normalization

Figure A.1: Health as a Luxury Good

A: Intercept Utility b = 10 B: b = 0 and σ = 0.915
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Blue (solid): benchmark run. Green (circles): b =
10 (∆T = 2.79).

Blue (solid): benchmark run. Green (cir-
cles): b = 10 and σ = 0.915.

predicted life cycle trajectories (green circled lines) coincide with those of the benchmark

model (blue solid lines).

Appendix C: Data sources

Data on life expectancy at age 20. Our samples for life expectancy pertains to males, and

for circa 2000. Specifically, our sample involves observations covering the period 1997–2006.
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The data is available in the Demographic yearbook for 2006 . Alternatively, the data can be

obtained online at the web address:

http://unstats.un.org/unsd/demographic/sconcerns/mortality/mort2.htm

In our sample, used for estimation, the median year of observation is 2003 with a standard

deviation of 2.73 years.

Data on Labor productivity. In the regressions we employ GDP per worker (RGDPW)

for 2000, from Penn World Tables, Mark 6.3.
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